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Abstract
It has been observed that inner representations
learned by different neural networks conceal struc-
tural similarities when the networks are trained
under similar inductive biases. Exploring the ge-
ometric structure of latent spaces within these
networks offers insights into the underlying sim-
ilarity among different neural models and facil-
itates reasoning about the transformations that
connect them. Identifying and estimating these
transformations presents a challenging task, but
it holds significant potential for various down-
stream tasks, including merging and stitching dif-
ferent neural architectures for model reuse. In
this study, drawing on the geometrical structure
of latent spaces, we show how it is possible to de-
fine representations that incorporate invariances
to the targeted transformations in a single frame-
work. We experimentally analyze how inducing
different invariances in the representations affects
downstream performances on classification and
reconstruction tasks, suggesting that the classes
of transformations that relate independent latent
spaces depend on the task at hand. We analyze
models in a variety of settings including different
initializations, architectural changes, and trained
on multiple modalities (e.g., text, images), testing
our framework on 8 different benchmarks.

1. Introduction
Discovering symmetries and conserved quantities is a core
step to extract meaningful representations from raw data, in
both biological and artificial systems (Higgins et al., 2022;
Benton et al., 2020; Lyle et al., 2020). Achieving invari-
ance to specific groups of transformations within neural
models holds significant utility in a plethora of real-world
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applications (Cohen & Welling, 2016; Fawzi et al., 2016;
Salamon & Bello, 2017).These desired invariances can be
obtained through techniques that operate either on the input
space (Benton et al., 2020; Immer et al., 2022) or on the
latent space (Moschella et al., 2022).Additionally, achiev-
ing invariance unlocks the potential for comparing similar
latent spaces across multiple training instances, facilitat-
ing communication and enabling model re-use (Klabunde
et al., 2023). However, measuring latent space similarity
remains a challenging task, with varying perspectives in
the literature. Some studies suggest a limited similarity
between layers of Neural Networks (NNs) trained from
different random initialization (Raghu et al., 2017; Wang
et al., 2018), while others demonstrate correspondences
even across different architectures (Kornblith et al., 2019).
Building upon the manipulation of neural representations, a
recent study introduced the concept of Relative Represen-
tation (RR) (Moschella et al., 2022). This framework, in
its original formulation, ensures invariance to latent isome-
tries and rescalings, facilitating effective communication
between latent spaces by projecting them into a shared rela-
tive space based on the distances between data points. Ex-
panding upon this simple but powerful concept of RR, we
present a methodology to directly infuse invariances into
the learned latent space. This is achieved by switching
from an absolute latent space to a relative one, defined by a
similarity function that instills specific properties into our
learned space.

2. Infusing invariances
Setting. We consider neural networks F as compositions of
encoding and decoding maps F = D◦E, where the encoder
E is responsible for computing a latent representation z =
E(x), x ∈ X for some domain X , with dim(Z) <<
dim(X ); and the decoder D is responsible for solving the
task at hand (e.g., reconstruction, generation, classification).
We indicate with MX if the module M was trained on the
domain X .

When considering different networks F, F ′ we are inter-
ested in modeling the transformation T that relates their
latent spaces Z,Z ′. The two networks could differ by their
initialization seeds (i.e., training dynamics), by architectural
changes, or even domain changes, i.e., X ̸= X ′. The fun-
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damental assumption of this work is that these variations
induce changes in the latent representations of the models,
but it exists an underlying manifold M where the represen-
tations are the same. When considering multiple models
F1..Fn the manifold M identifies an equivalence class of
encoders ET induced by the transformation T , defined as
{E ∈ ET |πMT E(·) = πME(·)} where πM represent the
projection on M and E ̸= E′. What we look for is a
representation r which independently projects the latent
spaces Z1..Zn into M and is therefore invariant to T , i.e.
r(z) = r(T z) for each z ∈ Z1..Zn, therefore r ≈ πM

In other terms we assume that there exists a metric d which
is preserved under the action of the transformation T , i.e.
dM(z, z′) = dM(T (z), T (z′)).

Generalizing the framework of (Moschella et al., 2022) to
arbitrary similarity functions or distance metrics gives us a
straightforward way to define representations r, which are
invariant to classes of transformations T .

Relative representations. The RR framework (Moschella
et al., 2022) provides a straightforward approach to rep-
resent each data sample in the latent space based on its
similarity to a set of training samples called anchors. By
representing data samples in the latent space as a function of
these anchors, the framework transforms the absolute latent
space into a relative one defined by the anchors.

Given a domain X with its corresponding learned embed-
ding function EX : X → Rn, a set of anchors AX ⊂ X ,
and a similarity function d : Rn × Rn → R. The RR for
each sample x ∈ X is calculated as

RR(z,AX ) =
⊕
ai∈A

d(z, ai) (1)

where z = EX (x), and
⊕

denotes row-wise concatenation.
For example, choosing the cosine similarity as d and addi-
tionally assuming that all embeddings are rescaled to unit
norm, i.e., ||E(x)|| = 1 corresponds to the choice of cosine
similarity as the similarity function. This choice results in a
relative space invariant to angle-preserving transformations.
Thus, giving two different domains X and Y related by T ,
and assuming to have two sets of anchors AX ,AY ⊂ X ×Y
in semantic correspondence, it is possible to transform the
two representations into their relative form, to obtain two
comparable spaces when using a d that induces representa-
tion invariant to T .

Distance-induced invariances. In this work, we leveage
the RR framework considering the following metrics d: Co-
sine (Cos.), Centered Cosine (Cen. Cos.), Euclidean (Eucl.),
Normalized Euclidean (Norm. Eucl.), Wasserstein (Wass.),
Change of Basis (CoB) and Geodesic (Geod.). Please refer
to the Appendix A.2 for formal definitions. Specifically,
we analyze the invariances infused by these metrics, tak-
ing into account the following classes of transformations

T : Isotropic Scaling (IS), Orthogonal Transformation (OT),
Translation (TR), Permutation (PT), Affine Transformation
(AT), Linear Transformation (LT), and Manifold Isometry
(MIS). Where MIS is an isometric deformation of the mani-
fold that preserves the geodesic distances between points.

Table 1 summarizes the invariances the different choices of
d guarantee, meanwhile, Figures 1 and 5 provide intuitive vi-
sualizations of them. In particular, we generate a set of syn-
thetic absolute latent spaces, apply various transformations
to each absolute space, thus, converting the transformed
spaces into relative spaces using the different measures d.
The relative space generated by employing a specific metric
d that infuses an invariance to the transformation T exhibits
the anticipated characteristic of remaining unchanged, under
transformations applied to the original space by T . Note that
none of the chosen metrics d induce invariances to either
LT or AT. Please refer to Appendix A.4 to visualize all the
possible combinations of d and T , and alternative absolute
initializations (e.g., grid).

Table 1. Overview of the invariances infused in the relative latent
space when choosing different similarity functions.

Similarity Function IS OT TR PT AT LT MIS

Absolute × × × × × × ×
Cosine

√ √
×

√
× × ×

Centered Cosine
√ √ √ √

× × ×
Euclidean

√ √ √ √
× × ×

Wasserstein
√

×
√ √

× × ×
Change of Basis

√
× ×

√
× × ×

Geodesic
√ √ √ √

× ×
√

3. Experiment
In this section, we perform qualitative and quantitative ex-
periments to analyze the use of distinct similarity functions
in creating representations that are inherently invariant to
specific transformations. In particular, Section 3.1 analyzes
the latent spaces produced by AutoEncoder (AE) and Varia-
tional AutoEncoder (VAE) architectures in reconstruction
tasks on several datasets, meanwhile, Section 3.2 evalu-
ates the zero-shot stitching performance in text and image
classification tasks.

3.1. Latent space analysis

Experimental setting. In this experiment, we perform
an image reconstruction task using AE on CIFAR−10,
CIFAR−100 (Krizhevsky et al., 2009), MNIST, and
FashionMNIST (Xiao et al., 2017) datasets. We train five
end-to-end instances of an AE and a VAE using different
seed values, utilizing the Absolute (Abs.) representations
until convergence. The generated representations are then

2



Infusing invariances in neural representations

IS OT TR LT
A

bs
.

C
os

.
E

uc
l.

W
as

s.
C

oB

Figure 1. Qualitative synthetic results using a spiral initialization.
Refer to Figure 6 for the visualization of all the possible combina-
tions.

transformed into relative representations by projecting the
embeddings onto 800 randomly selected but fixed anchors.
For the relative projection, we employ five different similar-
ity functions defined in Section 2. Finally, for each projec-
tion type, we compute the similarities across the different
seeds. See Appendix A.4 for the additional results.

Table 2. Similarity space scores (± std), across 5 seeds, of VAE
and AE on the CIFAR−100 dataset. See Appendix A.4 for the
complete results table.

PROJECTION COSINE ↑ L1 ↓ MSE ↓ SPEARMAN ↑

A
E

ABS. −0.00± 0.00 0.03± 0.00 4.42E-03± 0.00 0.00± 0.00
CEN. COS. 0.99± 0.00 0.02± 0.00 9.79E-04± 0.00 0.98 ± 0.01

COB 0.06± 0.00 0.21± 0.00 9.71E-02± 0.10 0.03± 0.02
COS. 0.98± 0.01 0.02± 0.00 1.89E-03± 0.00 0.97± 0.01

EUCL. 1.00 ± 0.00 0.16± 0.13 8.43E-02± 0.11 0.98 ± 0.01
NORM. EUCL. 1.00 ± 0.00 0.01± 0.00 5.16E-04± 0.00 0.98 ± 0.01

WASS. 0.99± 0.00 0.00 ± 0.00 8.80E-12 ± 0.00 0.84± 0.10

V
A

E

ABS. 0.00± 0.00 0.14± 0.00 5.87E-02± 0.01 0.00± 0.01
CEN. COS. 0.99± 0.00 0.02± 0.00 6.71E-03± 0.01 0.94± 0.06

COB 0.04± 0.00 0.21± 0.00 1.16E-01± 0.04 0.04± 0.02
COS. 0.99± 0.00 0.02± 0.00 6.83E-03± 0.01 0.94± 0.06

EUCL. 1.00 ± 0.00 0.13± 0.01 1.01E-01± 0.08 0.96 ± 0.04
NORM. EUCL. 1.00 ± 0.00 0.02± 0.00 3.37E-03± 0.03 0.94± 0.06

WASS. 0.89± 0.03 0.00 ± 0.00 1.86E-09 ± 0.00 0.48± 0.22

Result analysis. Table 2 and Figure 2 indicates that, apart
from the CoB, all other projections demonstrate high simi-
larity and low distance scores. This finding suggests that the
latent spaces generated by altering only the seed values are
strongly correlated within a specific transformation class.

Interestingly, both the VAE and AE achieve the best relative
space compatibility across different seeds with the same
projection type, even though the VAE is regularized. Our
hypothesis is that the emergence of a transformation class,

Figure 2. Cosine similarity scores (± std), across 5 seeds, of the
VAE architecture on the four different datasets. See Figure 9
analogous plot on AE.

which establishes correlations among independently trained
models with diverse seeds, relies primarily on the down-
stream task at hand (e.g., reconstruction), rather than being
influenced by the VAE regularization techniques.

Furthermore, it is noteworthy that the Cos., despite being
the default similarity function employed in RR (Moschella
et al., 2022), never attains optimal performance as the cho-
sen projection type. This interesting finding challenges the
assumption made in RR that angle-preserving transforma-
tions are the primary drivers of correlation among the latent
spaces of models trained with different seeds.

Takeaway. The emerging transformation class that relates
latent spaces obtained by changing only the seed is highly
dependent on the specific downstream task being addressed.

3.2. Zero-Shot Stitching

Experimental setting. In this experiment, we conduct zero-
shot stitching for the classification task (text and image) on
multiple datasets using various architectures. Our stitched
models consist of an encoder, which embeds the data, and a
specialized relative decoder responsible for the classification
task. The relative decoders are trained with different seed
values, and the resulting representations are transformed
into relative representations by projecting the embeddings
onto 1280 randomly selected but fixed anchors. The stitch-
ing process is performed in a zero-shot manner, without
any training or fine-tuning, and the accuracy score for the
classification task is evaluated on each assembled model.

Text Classification. We perform experiments on three dif-
ferent datasets TREC (coarse) (Hovy et al., 2001),
DBpedia (Zhang et al., 2015), and N24News (Text)
(Wang et al., 2022), adopting 11 different pre-trained trans-
formers. Additional details are provided in Appendix A.3.

Image Classification. We perform experiments on six dif-
ferent datasets, adopting 17 different pre-trained models
where 11 are transformer-based architectures while 6 are
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Figure 3. Cross-architecture stitching performance comparison for
the text classification task. The figure shows the mean weighted
Accuracy (± std) for each dataset across 5 different seeds.

ResNet-based architectures. Please refer to Appendix A.3
for a detailed list of models and datasets.

Table 3. Classification accuracy scores (± std), across 5 seeds on
the CIFAR−100 (fine) dataset. See Appendix A.4 for the
complete results table.

PROJECTION COSINE ↑ L1 ↓ MSE ↓ SPEARMAN ↑ ACCURACY ↑

ABS. 0.15 ± 0.32 1.74 ± 0.83 7.43 ± 5.19 0.13 ± 0.31 0.17 ± 0.29
CEN. COS. 0.60 ± 0.10 0.08 ± 0.01 0.01 ± 0.00 0.53 ± 0.11 0.65 ± 0.08

COB 0.06 ± 0.08 0.28 ± 0.33 0.36 ± 0.55 0.04 ± 0.07 0.38 ± 0.26
COS. 0.95 ± 0.02 0.18 ± 0.13 0.06 ± 0.06 0.48 ± 0.14 0.62 ± 0.09

EUCL. 1.00 ± 0.00 40.67 ± 35.92 2969.75 ± 3643.53 0.40 ± 0.15 0.60 ± 0.09
NORM. EUCL. 1.00 ± 0.00 0.06 ± 0.01 0.01 ± 0.00 0.53 ± 0.11 0.66 ± 0.08

Figure 4. Stitching performance comparison with different encod-
ing and decoding techniques: T stands for transformer-based and
T for ResNet-based, thus possible combinations are: NN, TT, NT,
and TN. The figure reports the mean weighted Accuracy (± std)
on CIFAR−100 (fine), across 5 seeds, and 17 architectures.

Result analysis. Figure 3 and Table 3 depict the perfor-
mance of different projection functions in the text classi-
fication and image classification tasks, respectively. The
projection function that guarantees the highest accuracy is
not shared across these two modalities: in the text classifi-
cation task, the CoB projection generally performs better,
while when used for the image classification task performs
the worst. Additionally, Figure 4 illustrates the stitching per-
formance when employing various encoding and decoding
techniques. When using the same architecture type for both
encoding and decoding, the performance improves across

all the projection functions, particularly when employing
transformer-based architectures. This outcome validates
the expectation that eliminating architectural variations as a
source of diversity leads to improved similarities between
independently trained models.

Remarkably, the Cos. consistently attains the highest over-
all performance, with only the Norm. Eucl. exhibiting
comparable results. However, the Norm. Eucl. projection
entails centering and unit norm normalization, rendering
it conceptually similar to the Cos.. These findings support
the assumption proposed in (Moschella et al., 2022) regard-
ing the existence of an angle-preserving transformation that
emerges between diverse models.

Takeaway. Results suggest that distinct latent spaces ex-
hibit strong correlations through angle-preserving transfor-
mations when models are trained using a downstream clas-
sification task.

4. Conclusion
This work introduces a simple methodology for constructing
representations that guarantee invariance to specific classes
of transformations by leveraging the framework of RR. Fur-
thermore, a preliminary analysis is conducted to explore
the types of transformations that arise in classification and
reconstruction tasks, with the aim of identifying suitable
similarity functions that directly infuse the required invari-
ance into the representation. Empirical findings from this
study demonstrate that the transformation class exhibiting
correlation among models in classification tasks corresponds
to an angle-preserving one, while a distinct transformation
class arises in reconstruction tasks.

Limitations and Future Works Finding an appropriate
similarity function that enforces invariance to arbitrary trans-
formations presents a significant challenge, and theoretical
guarantees regarding the specific class of transformations
that emerge between latent spaces under practical scenar-
ios remain elusive. Indeed, A potential avenue for future
research is to analyze a collection of models to directly es-
timate the range of transformations that relates them and
subsequently search for the corresponding similarity func-
tion that infuses the required invariance. This approach
could offer insights into the empirical bounds of the transfor-
mation classes that emerge between independently trained
networks across diverse settings. Moreover, it is possible
that alternative closed-form similarity functions exist that
impart invariances to other transformations, which could be
highly valuable in practical applications.
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A. Appendix
A.1. Related work

Comparison methods. Several metrics have been proposed to facilitate the comparison of latent spaces generated by
independent NNs, aiming to capture their inherent similarity up to some transformation that correlates the spaces. A classical
statistical method is Canonical Correlation Analysis (CCA) (Hotelling, 1992), which is invariant to linear transformations,
and its variations to improve robustness via Singular Value Decomposition (SVD), Singular Value CCA (SVCCA) (Raghu
et al., 2017), and to reduce the sensitivity of CCA to perturbations, Projection Weighted CCA (PWCCA) (Morcos et al.,
2018). Closely related to these metrics, the Centered Kernel Alignment (CKA) metric (Kornblith et al., 2019) measures
the similarity between latent spaces while disregarding orthogonal transformations. However, a recent study (Davari et al.,
2022) demonstrates its sensitivity to transformations that shift a subset of data points in the representation space.

These metrics provide a way to quantify the similarity of the shared structure across seemingly dissimilar representations.
In this work, we do not introduce new metrics that are invariant to specific transformations. Instead, we leverage the
RR framework to construct representations that are inherently invariant to certain transformations, allowing for direct
comparisons between them.

Learning and incorporating invariance and equivariance into representation. Invariances in NN can be achieved
through various techniques operating at different levels, including model architecture adjustment, training constraints, or
input manipulation (Lyle et al., 2020). Some studies focus on learning these invariances, particularly in scenarios where the
specific invariances in the data are unknown or the desired level of invariance to a particular symmetry group is uncertain.
(Benton et al., 2020) propose a method that parameterizes an augmentation distribution and jointly optimizes the training
loss with respect to the network and augmentation parameters to learn invariances and equivariances; (Immer et al., 2022)
introduce a gradient-based approach that effectively captures inherent invariances in the data, improving generalization
and data efficiency on image datasets; while (van der Ouderaa & van der Wilk, 2022) enable the training of NNs with
invariance to specific transformations by learning weight-space equivalents instead of modifying the input data. Alternatively,
other works directly incorporate invariances into the model or the representations through specific constraints. (Rath &
Condurache, 2023) enforce a multi-stream architecture to exhibit invariance to various symmetry transformations without
relying on data-driven learning, while (Kandi et al., 2019) propose an improved Convolutional Neural Network (CNN)
architecture for better rotation invariance. (Gandikota et al., 2021) introduce a method for designing network architectures
that are invariant or equivariant to structured transformations associated with a group action. Whereas, (Moschella et al.,
2022) propose an alternative representation of the latent space that guarantees invariance to latent isometries and rescalings
without requiring additional training.

In our approach, rather than modifying the NN architecture or imposing additional training constraints, we directly infuse
the desired invariances into the learned latent space. This enables the achievement of a consistent latent representation
across different architectures or datasets.

A.2. Distance-induced invariances details

This section provides additional details about the metrics we described in section Section 2.

Cosine (Cos.) Given two vectors u, v, the cosine similarity is defined as:

cos(u, v) =
u · v

∥u∥ ∥v∥
(2)

Centered Cosine (Cen. Cos.) Given two vectors u, v belonging to the latent space X ∈ Rn×d, the centered cosine similarity
is defined as:

cos(u, v) =
(u−mean(X)) · (v −mean(X))

∥u−mean(X)∥ ∥v −mean(X)∥
(3)

where mean(X) is calculated across the n dimension in order to perform center normalization.

Euclidean (Eucl.) Given two vectors u, v, the Euclidean distance is defined as:

d(u, v) =

√√√√ n∑
i=1

(ui − vi)2 (4)
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Normalized Euclidean (Norm. Eucl.) Given two vectors u, v, the Normalized Euclidean distance is defined as:

d(u, v) =

√√√√ n∑
i=1

(ui − vi)2 (5)

where u, v are first normalized with norm(x) = x−mean(X)
∥x−mean(X)∥ to have centered unit norm vectors.

Change of Basis (CoB) Given two spaces U, V, where U contains the anchors to the RR computation, the Change of Basis
is defined as:

CoB(ui, vj) = lstsq(UT , V T )i,j (6)

where lstsq computes a solution to the least squares problem for a linear system UX = V with U ∈ Km×n, V ∈ Km×k

is defined as minX∈Kn×k ∥UX − V ∥F , where ∥ − ∥F denotes the Frobenius norm. Additionally a normalizing function
norm(x) = x−mean(X)

∥x−mean(X)∥ is applied to each vector x ∈ X to have centered unit norm vectors.

Wasserstein (Wass.) Given two vectors u, v, considered as two distributions normalized with the Softmax function
θ : RK → (0, 1)K , θ(z)i = ezi∑K

j=1 ezj
, for i = 1, ...,K and z = (z1, ..., zk) ∈ RK , the Wasserstein distance is defined as:

W (u, v) = inf
π∈Γ(u,v)

∫
R×R

|x− y|dπ(x, y) (7)

Geodesic distance Given a manifold M and its parametrization g : Z 7→ X we can represent the Riemannian metric as
symmetric, positive definite matrix G(z) defined at each point in Z. G(z) can be obtained as G(z) = Jg(z)

TJg(z), where
Jg(z) indicates the Jacobian of g evaluated at z. This metric enables us to define an inner product on tangent spaces on M.
Considering a smooth curve γ : [a, b] 7→ Z this corresponds to a curve on M via g ◦ γ(t). Its arc length is defined as:

L(γ) =

∫ b

a

√
γ̇(t)TGγ(t)γ̇(t)dt (8)

A geodesic curve is a curve that locally minimizes the arc length, corresponding to minimizing the following energy
functional:

E(γ) =
1

2

∫ b

a

γ̇(t)TGγ(t)γ̇(t)dt (9)

In Figure 5 we show how geodesic distance is preserved under several classes of transformations, including manifold
isometries, i.e., possibly nonlinear transformations that preserve the metric on M. In the synthetic experiment geodesic
distances are computed using the heat method of (Crane et al., 2017) and the manifold isometry is computed using Isomap
(Tenenbaum et al., 2000). Possible approaches to extend geodesic computation to real cases when dim(Z) > 3 include
(Shao et al., 2017). We leave this promising direction for future work.

A.3. Implementation Details

This section provides further details about the experiments conducted in Section 3. Table 4 contains the full list of pre-trained
models used, while Table 5 contains dataset information.

A.3.1. TOOLS & TECHNOLOGIES

We use the following tools in all the experiments presented in this work:

• PyTorch Lightning, to ensure reproducible results while also getting a clean and modular codebase;

• Transformers by HuggingFace, to get ready-to-use transformers for both text and images;

• Datasets by HuggingFace, to access most of the datasets;

• DVC (Kuprieiev et al., 2022), for data versioning;

A.4. Additional results

8
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Figure 5. Qualitative synthetic results demonstrating invariances induced by using a geodesic distance-based representation. We plot
geodesic distances (top row) from the violet star point with values going from blue (closer) to red (farther). On the bottom row we compare
with Euclidean distances showing that the latter does not estimate nor preserve well the metric information under transformations of the
manifold.

Table 4. The pre-trained feature extractors used in the various experiments, with their HuggingFace name and encoding dim.

Modality HuggingFace model name Encoding Dim

L
an

gu
ag

e

bert-base-cased 768
bert-base-uncased 768
google/electra-base-discriminator 768
roberta-base 768
albert-base-v2 768
xlm-roberta-base 768
openai/clip-vit-base-patch32 768

V
is

io
n

rexnet 100 1280
cspdarknet53 1024
vit small patch16 224 384
vit base patch16 224 768
vit base patch16 384 768
vit base resnet50 384 768
openai/clip-vit-base-patch32 768
efficientnet b1 pruned 1280
regnety 002 368
cspresnext50 2048

Table 5. HuggingFace datasets utilized in the classification experiments, with their number of classes.

Dataset Number of Classes

Im
ag

e

MNIST 10
Fashion MNIST 10
CIFAR 10 10
Cifar 100 20 (coarse) — 100 (fine)
N24News 24

Te
xt

TREC 6 (coarse) — 50 (fine)
DBPEDIA 14 14
N24News 24
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Figure 6. Synthetic experiments using a spiral initialization.
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Figure 7. Synthetic experiments using random clustered initialization.
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Figure 8. Synthetic experiments using a grid initialization.
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Table 6. Overiew of the synthetic relative latent space invariances with respect to Isometric Scaling (IS), Orthogonal Transformation (OT),
Translation (TR), Permutation (PT), Affine Transformation (AT), and Linear Transformation (LT).

RR T MSE ↓ L1 ↓ Cosine ↑

C
os

.

AT 0.688 ± 0.716 0.691 ± 0.442 0.215 ± 0.647
IS 0.000 ± 0.000 0.000 ± 0.000 0.984 ± 0.125
LT 0.156 ± 0.284 0.211 ± 0.314 0.453 ± 0.881
OT 0.000 ± 0.000 0.000 ± 0.000 0.984 ± 0.125
PT 0.000 ± 0.000 0.000 ± 0.000 0.984 ± 0.125
TR 0.544 ± 0.433 0.655 ± 0.341 0.231 ± 0.558

C
en

.C
os

.

AT 0.318 ± 0.434 0.368 ± 0.360 0.785 ± 0.185
IS 0.000 ± 0.000 0.000 ± 0.000 1.000 ± 0.000
LT 0.603 ± 0.868 0.557 ± 0.540 0.594 ± 0.395
OT 0.000 ± 0.000 0.000 ± 0.000 1.000 ± 0.000
PT 0.000 ± 0.000 0.000 ± 0.000 1.000 ± 0.000
TR 0.000 ± 0.000 0.000 ± 0.000 1.000 ± 0.000

E
uc

l.

AT 63.084 ± 90.853 5.076 ± 4.349 0.979 ± 0.030
IS 1.860 ± 1.789 1.197 ± 0.657 1.000 ± 0.000
LT 26.680 ± 36.388 3.754 ± 2.797 0.994 ± 0.009
OT 0.000 ± 0.000 0.000 ± 0.000 1.000 ± 0.000
PT 0.000 ± 0.000 0.000 ± 0.000 1.000 ± 0.000
TR 0.000 ± 0.000 0.000 ± 0.000 1.000 ± 0.000

W
as

s.

AT 0.033 ± 0.052 0.121 ± 0.125 0.870 ± 0.190
IS 0.001 ± 0.001 0.018 ± 0.014 0.998 ± 0.003
LT 0.014 ± 0.023 0.063 ± 0.067 0.930 ± 0.122
OT 0.024 ± 0.047 0.098 ± 0.119 0.880 ± 0.229
PT 0.000 ± 0.000 0.000 ± 0.000 1.000 ± 0.000
TR 0.000 ± 0.000 0.000 ± 0.000 1.000 ± 0.000

C
oB

AT 0.055 ± 0.070 0.142 ± 0.138 0.646 ± 0.707
IS 0.000 ± 0.000 0.000 ± 0.000 1.000 ± 0.000
LT 0.027 ± 0.037 0.093 ± 0.097 0.781 ± 0.582
OT 0.000 ± 0.000 0.000 ± 0.000 1.000 ± 0.000
PT 0.000 ± 0.000 0.000 ± 0.000 1.000 ± 0.000
TR 0.000 ± 0.000 0.000 ± 0.000 1.000 ± 0.000

13
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Table 7. AE VAE analysis results
Cosine ↑ L1 ↓ MSE ↓ Pearson ↑ Spearman ↑

model dataset projection

AE CIFAR 10 Abs. −0.00± 0.00 0.02± 0.00 0.00± 0.00 −0.00± 0.00 −0.00± 0.00
Cen. Cos. 0.99± 0.00 0.02± 0.00 0.00± 0.00 0.99± 0.00 0.99± 0.00
CoB 0.06± 0.00 0.20± 0.00 0.07± 0.00 0.06± 0.00 0.06± 0.00
Cos. 0.98± 0.00 0.02± 0.00 0.00± 0.00 0.99± 0.00 0.98± 0.00
Eucl. 1.00± 0.00 0.12± 0.07 0.02± 0.02 0.99± 0.00 0.99± 0.00
Norm. Eucl. 1.00± 0.00 0.01± 0.00 0.00± 0.00 0.99± 0.00 0.99± 0.00
Wass. 0.99± 0.00 0.00± 0.00 0.00± 0.00 0.94± 0.01 0.91± 0.01

CIFAR 100 Abs. −0.00± 0.00 0.03± 0.00 0.00± 0.00 −0.00± 0.00 0.00± 0.00
Cen. Cos. 0.99± 0.00 0.02± 0.00 0.00± 0.00 0.99± 0.00 0.99± 0.00
CoB 0.06± 0.00 0.21± 0.00 0.07± 0.00 0.06± 0.00 0.05± 0.00
Cos. 0.98± 0.01 0.02± 0.00 0.00± 0.00 0.99± 0.00 0.98± 0.00
Eucl. 1.00± 0.00 0.16± 0.13 0.05± 0.06 0.99± 0.00 0.99± 0.00
Norm. Eucl. 1.00± 0.00 0.01± 0.00 0.00± 0.00 0.99± 0.00 0.99± 0.00
Wass. 0.99± 0.00 0.00± 0.00 0.00± 0.00 0.94± 0.01 0.91± 0.01

fmnist Abs. −0.00± 0.01 0.03± 0.00 0.00± 0.00 −0.00± 0.01 −0.00± 0.00
Cen. Cos. 0.98± 0.00 0.03± 0.00 0.00± 0.00 0.98± 0.00 0.97± 0.00
CoB 0.01± 0.00 0.26± 0.00 0.12± 0.00 0.01± 0.00 0.01± 0.00
Cos. 0.97± 0.01 0.04± 0.00 0.00± 0.00 0.98± 0.00 0.96± 0.01
Eucl. 1.00± 0.00 0.28± 0.18 0.11± 0.12 0.99± 0.00 0.98± 0.00
Norm. Eucl. 1.00± 0.00 0.02± 0.00 0.00± 0.00 0.98± 0.00 0.97± 0.00
Wass. 0.98± 0.00 0.00± 0.00 0.00± 0.00 0.91± 0.01 0.87± 0.01

mnist Abs. 0.00± 0.01 0.06± 0.00 0.01± 0.00 0.00± 0.01 0.00± 0.00
Cen. Cos. 0.98± 0.01 0.03± 0.00 0.00± 0.00 0.98± 0.01 0.97± 0.01
CoB 0.01± 0.00 0.28± 0.01 0.13± 0.01 0.01± 0.00 0.01± 0.00
Cos. 0.95± 0.03 0.05± 0.02 0.00± 0.00 0.97± 0.01 0.96± 0.01
Eucl. 1.00± 0.00 0.34± 0.19 0.16± 0.14 0.98± 0.01 0.97± 0.01
Norm. Eucl. 1.00± 0.00 0.02± 0.00 0.00± 0.00 0.98± 0.00 0.97± 0.01
Wass. 0.97± 0.00 0.00± 0.00 0.00± 0.00 0.75± 0.04 0.67± 0.04

VAE CIFAR 10 Abs. −0.00± 0.01 0.15± 0.00 0.07± 0.00 −0.01± 0.01 −0.00± 0.01
Cen. Cos. 0.99± 0.00 0.02± 0.00 0.00± 0.00 0.99± 0.00 0.99± 0.00
CoB 0.04± 0.00 0.21± 0.00 0.08± 0.00 0.04± 0.00 0.04± 0.00
Cos. 0.99± 0.00 0.02± 0.00 0.00± 0.00 0.99± 0.00 0.98± 0.00
Eucl. 1.00± 0.00 0.15± 0.03 0.04± 0.01 0.99± 0.00 0.99± 0.00
Norm. Eucl. 1.00± 0.00 0.02± 0.00 0.00± 0.00 0.99± 0.00 0.99± 0.00
Wass. 0.85± 0.08 0.00± 0.00 0.00± 0.00 0.54± 0.12 0.70± 0.03

CIFAR 100 Abs. 0.00± 0.00 0.14± 0.00 0.07± 0.00 0.00± 0.00 0.00± 0.01
Cen. Cos. 0.99± 0.00 0.02± 0.00 0.00± 0.00 0.99± 0.00 0.99± 0.00
CoB 0.04± 0.00 0.21± 0.00 0.07± 0.00 0.04± 0.00 0.04± 0.00
Cos. 0.99± 0.00 0.02± 0.00 0.00± 0.00 0.99± 0.00 0.98± 0.00
Eucl. 1.00± 0.00 0.13± 0.01 0.03± 0.00 0.99± 0.00 0.99± 0.00
Norm. Eucl. 1.00± 0.00 0.02± 0.00 0.00± 0.00 0.99± 0.00 0.99± 0.00
Wass. 0.89± 0.03 0.00± 0.00 0.00± 0.00 0.58± 0.11 0.68± 0.04

FMNIST Abs. 0.00± 0.00 0.08± 0.00 0.04± 0.00 0.00± 0.00 0.00± 0.01
Cen. Cos. 0.87± 0.02 0.11± 0.01 0.02± 0.00 0.87± 0.02 0.85± 0.02
CoB 0.01± 0.00 0.30± 0.01 0.16± 0.01 0.01± 0.00 0.01± 0.00
Cos. 0.87± 0.02 0.11± 0.01 0.02± 0.00 0.87± 0.02 0.85± 0.02
Eucl. 1.00± 0.00 0.36± 0.02 0.23± 0.02 0.91± 0.01 0.89± 0.01
Norm. Eucl. 1.00± 0.00 0.08± 0.00 0.01± 0.00 0.88± 0.01 0.85± 0.02
Wass. 0.85± 0.03 0.00± 0.00 0.00± 0.00 0.46± 0.08 0.34± 0.06

MNIST Abs. 0.00± 0.01 0.08± 0.00 0.06± 0.00 0.00± 0.01 0.00± 0.00
Cen. Cos. 0.96± 0.01 0.05± 0.00 0.00± 0.00 0.96± 0.01 0.95± 0.01
CoB 0.01± 0.00 0.30± 0.01 0.15± 0.01 0.01± 0.00 0.01± 0.00
Cos. 0.95± 0.01 0.05± 0.00 0.00± 0.00 0.96± 0.01 0.95± 0.01
Eucl. 1.00± 0.00 0.26± 0.02 0.11± 0.02 0.96± 0.00 0.95± 0.01
Norm. Eucl. 1.00± 0.00 0.04± 0.00 0.00± 0.00 0.96± 0.01 0.95± 0.01
Wass. 0.85± 0.01 0.00± 0.00 0.00± 0.00 0.24± 0.03 0.20± 0.04
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Figure 9. Cosine similarity scores (± std), over 5 seeds, of the AE architecture on the four different datasets.

Figure 10. Cross-architecture stitching performance comparison for both image and text classification task. The figure shows the mean
weighted Accuracy (± std) for each dataset, across 5 seeds.
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Table 8. Results of the stitching experiment on classification tasks.

Cosine ↑ L1 ↓ MSE ↓ Pearson ↑ Accuracy ↑
C
I
F
A
R

1
0

Abs. 0.15± 0.32 1.74± 0.83 7.39± 5.17 0.13± 0.31 0.23± 0.31
Cen. Cos. 0.69± 0.08 0.08± 0.01 0.01± 0.00 0.62± 0.08 0.88± 0.06
CoB 0.05± 0.07 0.33± 0.41 0.54± 0.89 0.04± 0.07 0.53± 0.30
Cos. 0.96± 0.02 0.17± 0.13 0.05± 0.06 0.55± 0.12 0.87± 0.07
Eucl. 1.00± 0.00 39.87± 35.01 2847.94± 3488.28 0.48± 0.13 0.85± 0.08
Norm. Eucl. 1.00± 0.00 0.06± 0.01 0.01± 0.00 0.62± 0.08 0.88± 0.06

C
I
F
A
R

1
0
0

C
o
a
r
s
e

Abs. 0.15± 0.32 1.74± 0.83 7.43± 5.19 0.13± 0.31 0.17± 0.29
Cen. Cos. 0.60± 0.10 0.08± 0.01 0.01± 0.00 0.53± 0.11 0.65± 0.08
CoB 0.06± 0.08 0.28± 0.33 0.36± 0.55 0.04± 0.07 0.38± 0.26
Cos. 0.95± 0.02 0.18± 0.13 0.06± 0.06 0.48± 0.14 0.62± 0.09
Eucl. 1.00± 0.00 40.67± 35.92 2969.75± 3643.53 0.40± 0.15 0.60± 0.09
Norm. Eucl. 1.00± 0.00 0.06± 0.01 0.01± 0.00 0.53± 0.11 0.66± 0.08

C
I
F
A
R

1
0
0

F
i
n
e

Abs. 0.15± 0.32 1.74± 0.83 7.43± 5.19 0.13± 0.31 0.12± 0.27
Cen. Cos. 0.60± 0.10 0.08± 0.01 0.01± 0.00 0.53± 0.11 0.39± 0.08
CoB 0.06± 0.08 0.35± 0.49 0.77± 2.03 0.04± 0.07 0.25± 0.22
Cos. 0.95± 0.02 0.18± 0.13 0.06± 0.06 0.48± 0.14 0.35± 0.10
Eucl. 1.00± 0.00 40.66± 35.90 2968.71± 3642.09 0.41± 0.15 0.34± 0.11
Norm. Eucl. 1.00± 0.00 0.06± 0.01 0.01± 0.00 0.53± 0.11 0.42± 0.08

D
B
P
E
D
I
A

1
4 Abs. −0.00± 0.04 0.52± 0.23 0.85± 0.41 −0.00± 0.01 0.07± 0.01

Cen. Cos. 0.39± 0.23 0.26± 0.10 0.11± 0.08 0.36± 0.23 0.37± 0.15
CoB 0.05± 0.02 0.04± 0.01 0.00± 0.00 0.02± 0.01 0.51± 0.22
Cos. 0.96± 0.02 0.36± 0.21 0.19± 0.15 0.28± 0.22 0.29± 0.12
Eucl. 0.96± 0.02 12.08± 7.59 212.93± 211.77 0.28± 0.23 0.28± 0.11
Norm. Eucl. 0.98± 0.01 0.20± 0.08 0.08± 0.05 0.36± 0.23 0.39± 0.15

F
a
s
h
i
o
n

M
N
I
S
T

Abs. 0.13± 0.32 1.74± 0.83 7.68± 5.39 0.12± 0.31 0.21± 0.27
Cen. Cos. 0.82± 0.05 0.10± 0.02 0.02± 0.01 0.75± 0.06 0.80± 0.03
CoB 0.05± 0.05 0.24± 0.27 0.27± 0.43 0.03± 0.04 0.53± 0.28
Cos. 0.99± 0.01 0.16± 0.09 0.04± 0.04 0.69± 0.08 0.76± 0.03
Eucl. 1.00± 0.00 30.42± 26.65 1676.46± 2058.34 0.65± 0.08 0.77± 0.04
Norm. Eucl. 1.00± 0.00 0.07± 0.01 0.01± 0.00 0.75± 0.06 0.80± 0.03

M
N
I
S
T

Abs. 0.12± 0.34 1.69± 0.85 6.83± 4.90 0.11± 0.34 0.21± 0.28
Cen. Cos. 0.64± 0.10 0.15± 0.02 0.04± 0.01 0.60± 0.11 0.76± 0.04
CoB 0.04± 0.04 0.17± 0.18 0.12± 0.19 0.03± 0.03 0.58± 0.30
Cosine 0.99± 0.00 0.15± 0.08 0.03± 0.03 0.59± 0.13 0.68± 0.06
Eucl. 0.99± 0.00 18.10± 16.21 620.56± 764.42 0.57± 0.12 0.71± 0.06
Norm. Eucl. 0.99± 0.00 0.11± 0.02 0.02± 0.01 0.60± 0.11 0.78± 0.04

N
2
4
N
e
w
s

(
i
m
a
g
e
)

Abs. 0.30± 0.42 2.07± 0.64 8.72± 4.54 0.28± 0.41 0.18± 0.19
Cen. Cos. 0.64± 0.11 0.06± 0.01 0.01± 0.00 0.57± 0.12 0.38± 0.04
CoB 0.12± 0.11 0.08± 0.19 0.09± 0.32 0.09± 0.10 0.32± 0.09
Cos. 0.90± 0.03 0.08± 0.02 0.01± 0.00 0.60± 0.13 0.36± 0.05
Eucl. 1.00± 0.00 54.16± 33.24 4061.31± 3753.04 0.47± 0.22 0.33± 0.08
Norm. Eucl. 1.00± 0.00 0.04± 0.01 0.00± 0.00 0.57± 0.12 0.38± 0.04

N
2
4
N
e
w
s

(
t
e
x
t
)

Abs. 0.03± 0.04 0.53± 0.29 0.90± 0.53 −0.00± 0.03 0.05± 0.01
Cen. Cos. 0.18± 0.14 0.42± 0.36 0.34± 0.44 0.15± 0.13 0.23± 0.16
CoB 0.14± 0.12 0.00± 0.00 0.00± 0.00 0.10± 0.10 0.29± 0.21
Cos. 1.00± 0.00 0.15± 0.11 0.04± 0.04 0.18± 0.17 0.15± 0.11
Eucl. 0.69± 0.44 9.45± 8.39 167.88± 231.19 0.17± 0.16 0.18± 0.13
Norm. Eucl. 0.71± 0.44 0.50± 0.57 0.59± 0.88 0.15± 0.13 0.24± 0.17

T
R
E
C

Abs. 0.01± 0.03 0.47± 0.22 0.73± 0.31 −0.00± 0.02 0.16± 0.07
Cen. Cos. 0.48± 0.14 0.36± 0.11 0.21± 0.12 0.53± 0.12 0.54± 0.06
CoB 0.09± 0.03 0.03± 0.01 0.00± 0.00 0.04± 0.01 0.47± 0.10
Cos. 0.98± 0.02 0.17± 0.07 0.05± 0.04 0.57± 0.13 0.44± 0.07
Eucl. 0.95± 0.02 6.67± 3.97 73.78± 75.43 0.58± 0.13 0.47± 0.06
Norm. Eucl. 0.97± 0.02 0.28± 0.10 0.15± 0.10 0.53± 0.12 0.57± 0.06
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