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Abstract

The recent advancements in Deep Learning (DL) research have notably influenced
the finance sector. We examine the robustness and generalizability of fifteen state-
of-the-art DL models focusing on Stock Price Trend Prediction (SPTP) based on
Limit Order Book (LOB) data. To carry out this study, we developed LOBCAST,
an open-source framework that incorporates data preprocessing, DL model train-
ing, evaluation and profit analysis. Our extensive experiments reveal that all mod-
els exhibit a significant performance drop when exposed to new data, thereby
raising questions about their real-world market applicability. Our work serves as
a benchmark, illuminating the potential and the limitations of current approaches
and providing insight for innovative solutions.

1 Introduction

Predicting stock market prices is a complex endeavour due to myriad factors, including macroeco-
nomic conditions and investor sentiment [1]. Nevertheless, professional traders and researchers usu-
ally forecast price movements by understanding key market properties, such as volatility or liquidity,
and recognizing patterns to anticipate future market trends [2]. Effective mathematical models are
essential for capturing complex market dependencies. The recent surge in artificial intelligence has
led to significant work in using machine learning algorithms to predict future market trends [3–
5]. Recent Deep Learning (DL) models have achieved over 88% in F1-score in predicting market
trends in simulated settings using historical data [6]. However, replicating these performances in
real markets is challenging, suggesting a possible simulation-to-reality gap [7, 8].

In this paper, we benchmark the most recent and promising DL approaches to Stock Price Trend
Prediction (SPTP) based on Limit Order Book (LOB) data, one of the most valuable information
sources available to traders on the stock markets. Our benchmark evaluates their robustness and
generalizability [9–11]. In particular, we assess the models’ robustness by comparing the stated
performance with our reproduced results on the same dataset FI-2010 [12]. We also assess their
generalizability by testing their performance on unseen market scenarios using LOBSTER data [13].
We focus on novel data-driven approaches from Machine Learning (ML) and DL that analyze the
market at its finest resolution, using high-frequency LOB data. In this work, we formally define the
SPTP problem considering a ternary trend classification. Our findings reveal that while best models
exhibit robustness, achieving solid F1-scores on FI-2010, they show poor generalizability, as their
performance significantly drops when applied to unseen LOBSTER market data.
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The main contributions of our work are the following:

• We release a highly modular open-source framework called LOBCAST1, to pre-process data,
train, and test stock market models. Our framework employs the latest DL libraries to provide
all researchers an easy, performing, and maintainable solution. Furthermore, to support future
studies, we release two meta-learning models and a backtesting environment for profit analysis.

• We evaluate existing LOB-based stock market trend predictors, showing that most of them overfit
the FI-2010 dataset, with remarkably lower performance on unseen stock data.

• We survey and discuss the financial performance of existing methods under different market sce-
narios to guide model selection in real-world applications2.

• We discuss the strengths and limitations of existing methodology and identify areas for future
research toward more reliable, robust, and reproducible approaches to stock market prediction.

2 Related Work

The increasing interest in DL for price trend prediction motivated several researchers to collect and
analyze State-Of-the-Art (SOTA) solutions in benchmark surveys. The study by Jiang et al. [4]
analyzes papers published between 2017 and 2019 that focused on stock price and market index
prediction. In their literature review, the authors studied the Neural Network (NN) structures and
evaluation metrics used in selected papers, as well as implementation and reproducibility. This work
was extended in [14], including an in-depth analysis of the data (i.e., market indices, input variables
used for stock market predictions). Ozboyoglu et al. [15] and Sezer et al. [5] provide a comprehen-
sive overview of the SOTA DL models used for financial predictions. The work in [16] surveys 86
papers on stock and foreign exchange price prediction. The authors review the datasets, variables,
models, and performance metrics used in each surveyed article. In contrast to these works, in this
paper, we run experiments to study the robustness and generalizability of the selected approaches.
Nti et al. [17] conducted a systematic and critical review of 122 papers. Their study also compares
the self-stated accuracy, error metrics, and software packages used in the selected papers by means
of experiments. In contrast to this, we focus on papers that use LOB data and DL algorithms for
price trend predictions. We also evaluate the generalizability of the models by driving tests on a
different dataset. Other studies [18, 19] also analyze solutions based on sentiment analysis through
Natural Language Processing (NLP) to investigate the impact of social media on the stock market,
showing that this combination improves the accuracy of stock prediction models. In [20], the au-
thors presented a comprehensive overview of traditional and ML-based approaches for stock market
prediction and highlighted some limitations of traditional approaches, showing that DL models out-
perform them in terms of accuracy. Similar findings are reported in [21]. Lim et al. [22] discussed
recent developments in hybrid DL models, which combine statistical and learning components for
both one-step-ahead and multi-horizon time-series forecasting. Similarly, Shah et al. [23] discussed
hybrid approaches in their work on the state-of-the-art algorithms commonly applied to stock market
prediction. Additionally, they provided a taxonomy of computational approaches for stock market
analysis and prediction. Finally, Olorunnimbe et al. [24] focused on exploring applications of DL in
the stock market that involve backtesting, with a particular emphasis on research papers that meet the
requirements for real-world use. They reviewed various scenarios in which DL has been employed
in finance, with a focus on trade strategy, price prediction, portfolio management, and others.

Our work adds to this literature by providing a benchmark of recent deep learning approaches based
on LOB data, evaluating their robustness and generalizability, and releasing an open-source frame-
work for pre-processing data, training, and testing models.

3 Stock Price Trend Prediction

The common ground that unifies the models studied in this paper is the goal of solving the SPTP
problem via Deep Neural Networks (DNNs) trained on LOB data. LOB data are particularly enlight-
ening as they provide raw and granular information on stocks’ trades. By observing the LOB in a
fixed period of time, SPTP models return a distribution over the possible future market movements.

1The code is included in the supplementary material and will be publicly available upon acceptance
2The details are reported in the supplementary materials for space reasons
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Limit Order Book A stock exchange employs a matching engine for storing and matching the
orders issued by the trading agents. This is achieved by updating the so-called Limit Order Book
(LOB) data structure. Each security (tradable asset) has a LOB, recording all the outstanding bid
and ask orders currently available on an exchange or a trading platform. The shape of the order book
gives traders a simultaneous view of the market demand and supply.

Figure 1: An example of LOB.

There are three major types of orders. Mar-
ket orders are executed immediately at the best
available price. Limit orders, instead, include
the specification of a desired target price: a
limit sell [buy] order will be executed only
when it is matched to a buy [sell] order whose
price is greater [lower] than or equal to the tar-
get price. Finally, a Cancel order removes a
previously submitted limit order.

Figure 1 depicts an example of a LOB snap-
shot, characterized by buy orders (bid) and sell
orders (ask) of different prices. A level, shown
on the horizontal axis, represents the number of
shares with the same price either on the bid or ask side. In the example of Figure 1, there are three
bid and three ask levels. The best bid is the price of the shares with the highest price on the buy
side; analogously, the best ask is the price of the shares with the lowest price on the bid side. When
the former exceeds or equals the latter, the corresponding limit ask and bid orders are executed. The
LOB is updated with each event (order insertion/modification/cancellation) and can be sampled at
regular time intervals.

We represent the evolution of a LOB as a time series L, where each L(t) ∈ R4L is called a LOB
record, for t = 1, . . . , N , being N the number of LOB observations and L the number of levels.
In particular, L(t) = {P s(t), V s(t)}s∈{ask,bid}, where P ask(t), P bid(t) ∈ RL represent the prices
of levels 1 to L of the LOB, on the ask (s = ask) side and bid (s = bid) side, respectively, at
time t. Analogously, V ask(t), V bid(t) ∈ RL represent the volumes. This means that for each t and
every j ∈ {1, . . . , L} on the ask side, V ask

j (t) shares can be sold at price P ask
j (t). The mid-price

m(t) of the stock at time t, is defined as the average value between the best bid and the best ask,
m(t) = P ask(t)+P bid(t)

2 . Mid-prices are synthetic values that are commonly used as indicators of the
stock price trend. In average, if most of the executed orders are on the ask [bid] side, the mid-price
increases [decreases] accordingly.

Trend Definition We use a ternary classification for trends: U (“upward”) if the price trend is
increasing; D (“downward”) for decreasing prices; and S (“stable”) for prices with negligible varia-
tions. Thanks to their informativeness, mid-prices are well-suited to drive this classification. Nev-
ertheless, because of the market’s inherent fluctuations and shocks, they can exhibit highly volatile
trends. For this reason, using a direct comparison of consecutive mid-prices, i.e., m(t) and m(t+1),
for stock price labelling would result in a noisy labelled dataset. As a result, labelling strategies typ-
ically employ smoother mid-price functions instead of raw mid-prices. Such functions consider
mid-prices over arbitrarily long time intervals, called horizons. Our experiments adopt the labelling
proposed in [12] and repurposed in several other state-of-the-art solutions we selected for bench-
marking. The adopted labelling strategy compares the current mid-price to the average mid-prices
a+(k, t) in a future horizon of k time units, formally:

a+(k, t) =
1

k

k∑
i=1

m(t+ i). (1)

The average mid-prices are used to define a static threshold θ ∈ (0, 1) that is used to identify an
interval around the current mid-price and define the class of the trend at time t as follows:

U: a+(k, t) > m(t)(1 + θ), D: a+(k, t) < m(t)(1− θ), S: a+(k, t) ∈ [m(t)(1− θ),m(t)(1 + θ)]. (2)

With this labelling, we beat the effect of mid-price fluctuations by considering their average over
a desired horizon k and considering a trend to be stable when the average mid-price variations do
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not change significantly, thus avoiding over-fitting. We highlight that time stamps t can come either
from a homogeneous or an event-based process. In our experiments, we consider an event-based
process.

Models I/O Given the time series of a LOB L and a temporal window T = [t − h, t], h ∈ N, we
can extract market observations on T , M(T ), by considering the sub-sequence of LOB observations
starting from time t − h up to t. In Section 1 of the Supplemental Material (SUP), we give a
representation of a market observation M(T ) ∈ Rh×4L. The market observation over the window
[t − h, t] is associated with the label computed through Equations 1 and 2 at time t. An SPTP
predictor takes as an input a market observation and outputs a probability distribution over the trend
classes U, D, and S.

4 Experiments

We conducted an extensive evaluation to assess the robustness and generalizability of 15 DL models
to solve the SPTP task, as presented in Section 3. Among these, 13 were SOTA models, and 2
DL baseline models commonly used in the literature. More details on the models are given in
Section 4.2.

In line with many other studies, we adopt the definition of robustness and generalizability intro-
duced by J. Pineau et al. in their work [9]. Robustness is evaluated by testing the proposed models
on FI-2010, a benchmark dataset employed in all surveyed papers. In some cases, the authors of the
considered works have not provided crucial information, such as the code or the hyperparameters of
their models, making reimplementation and hyperparameter search necessary. We refer to Section
5.1 in SUP for a complete description of the hyperparameters search. To evaluate the generaliz-
ability, we created two datasets called LOB-2021 and LOB-2022, extrapolated from the LOBSTER
dataset [13]. We describe these datasets in Section 4.1.

Our experiments were carried out using LOBCAST [25], the open-source framework we make
available online. The framework allows the definition of new price trend predictors based on LOB
data. More details on the framework are given in Section 4.3.

4.1 Datasets

LOB data are not often publicly available and very expensive: stock exchanges (e.g., NASDAQ) pro-
vide fine-grained data only for high fees. The high cost and low availability restrict the application
and development of DL algorithms in the research community.

The most widely spread public LOB dataset is FI-2010 which is licensed under Creative Commons
Attribution 4.0 International (CC BY 4.0) and was proposed in 2017 by Ntakaris et al. [12] with
the objective of evaluating the performance of machine learning models on the SPTP task. The
dataset consists of LOB data from five Finnish companies: Kesko Oyj, Outokumpu Oyj, Sampo,
Rautaruukki, and Wärtsilä Oyj of the NASDAQ Nordic stock market. Data spans the time period
between June 1st to June 14th, 2010, corresponding to 10 trading days (trading happens only on
business days). About 4 million limit order messages are stored for 10 levels of the LOB. The dataset
has an event-based granularity, meaning that the time series records are not uniformly spaced in
time. LOB observations are sampled at intervals of 10 events, resulting in a total of 394,337 events.
This dataset has the intrinsic limitation of being already pre-processed (filtered, normalized, and
labelled) so that the original LOB cannot be backtracked, thus hampering thorough experimentation.
Additionally, the labelling method employed is found to be prone to instability, as demonstrated by
Zhang et al. in [26]. Moreover, the dataset is unbalanced at varying prediction horizons. Varying the
horizon k ∈ K = {1, 2, 3, 5, 10}, the stationary class S is progressively less predominant in favour
of the upward and downward classes. For instance, the class composition for different values of k is
k = 1, U: 18%, S: 63%, D:19%; k = 5, U: 32%, S: 35%, D:33%; k = 10, U: 37%, S: 25%, D:38%.

To test the generalizability of the models in a more realistic scenario, we used data extracted from
LOBSTER [13], an online LOB data provider for order book data, which is not available for free,
as is often the case for critical applications such as health and finance [9]. The data are reconstructed
from NASDAQ traded stocks and are publicly available for the research community with an annual
fee. To compare the performance of the algorithms in a wide range of scenarios, we have created a
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A
X

IA
L

L
O

B
(2

02
1)

temporal
shape (h) 100 100 100 10 100 15 300 300 100 15 10 50 5 100 40

features
shape 40 40 40 40 40 144 42 40 40 144 40 40 144 40 40

code
available ✗ ✗ ✗ TF PT PT ✗ ✗ TF PT ✗ TF ✗ PT ✗

n. trainable
parameters 1.0·106 1.6·104 3.5·104 1.1·104 1.4·105 2.1·106 5.3·104 2.8·105 1.1·105 6.5·105 1.1·104 1.8·105 1.2·105 1.3·107 2.0·104

inference
time (ms) 0.08 0.21 0.36 0.48 1.31 0.15 0.50 0.49 2.40 0.43 0.71 1.73 0.23 3.90 1.91

Table 1: Relevant characteristics of the selected models.

large LOB dataset, including several stocks and time periods. The chosen pool of stocks includes
those from the top 50% more liquid stocks of NASDAQ. To create a challenging evaluation sce-
nario, we selected six stocks, namely: SoFi Technologies (SOFI), Netflix (NFLX), Cisco Systems
(CSCO), Wing Stop (WING), Shoals Technologies Group (SHLS), and Landstar System (LSTR).
The periods in consideration are July 2021 (2021-07-01 to 2021-07-15, 10 trading days) making up
LOB-2021, and February 2022 (2022-02-01 to 2022-02-15, 10 trading days) making up LOB-2022.
The selection of these two periods aimed to capture data from periods with different levels of market
volatility. February 2022 exhibited higher volatility compared to July 2021, largely influenced by
the Ukrainian crisis. This allows for an assessment of models across varying market conditions. We
describe in detail our stock selection procedure in Section 3 in SUP.

Datasets for the Generalizability Study Due to copyright reasons, we are unable to release the
LOB-2021 and LOB-2022 datasets. However, in Section 4 in SUP, we provide detailed insights into
how they are generated, ensuring transparency and replicability in future research. The approach we
adopt to generate both datasets closely follows the creation process presented for FI-2010 in [12]. In
summary, for each considered stock s, we construct a stock time series of LOB records Ls(t) ∈ R4L,
with L = 10. To resemble the FI-2010 structure, we sample the market observation every 10 events
and split records into training, validation, and testing sets using a 6-2-2 days split3. Normalization
is performed on stock time series using a z-score approach, and the dataset is labelled by leveraging
the trend definitions described in Equation (2). Lastly, both LOB-2021 and LOB-2022 contain
prediction labels for each one of the considered horizons K.

4.2 Models

We have selected 13 SOTA models based on DL for the SPTP task. These models were proposed in
papers published between 2017 and 2022 and utilized datasets LOB data for training and testing. In
addition to the models proposed in the selected papers, we also included two classical DL algorithms,
namely Multilayer Perceptron (MLP) and Convolutional Neural Network (CNN), which were used
as a benchmark in [27] and in [31], respectively. All proposed models are based on DNNs and were
originally trained and tested on the FI-2010 dataset.

A comprehensive summary of the benchmarked models can be found in Table 1, while for additional
details, we refer the reader to Section 2 in SUP. In Table 1, the temporal shape represents the length
of the input market observation for the model. The features shape refers to the number of features
used by the models to infer the trend in the original papers. In the Table, we also indicate whether
the authors released the code, and if so, whether they have used PyTorch (PT) [38] or Tensorflow
(TF) [39]. This is relevant because to ensure consistency and compatibility within our proposed
framework, based on PyTorch Lightning, we found it necessary to re-implement models for which
the code was not available or was only available in Tensorflow. To improve the reproducibility of
the results, it is advisable for the research community to publish the code developed.

In High-Frequency Trading (HFT) and algorithmic trading in general, minimizing latency between
model querying and order placement is of utmost importance [40]. To explore this aspect, we an-
alyzed the inference time in milliseconds of all models, based on the experiments reported in Sec-

3For the experiments on FI-2010 we followed the same data splitting procedure as the 13 SOTA papers. We
split the dataset using the first 7 days for the train set and validation set (80% / 20%) and the last three days as
the test set.
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tion 4.4. As shown in Table 1, DEEPLOB, DEEPLOBAT, AXIALLOB, TRANSLOB, and ATNBoF
had inference times in the order of milliseconds, potentially unsuitable for HFT applications com-
pared to other models with shorter times. Finally, we have reported the number of trainable param-
eters for each model. A noteworthy observation is that the average number of parameters is very
low compared to other classical fields, such as computer vision [41] and natural language processing
[42, 43]. This leads us to conjecture that current systems are inadequate in effectively handling the
complexity of LOB data, as we will verify in the rest of this paper.

To explore the possibility of achieving new SOTA performance by combining the predictions of all
15 models, we have implemented two ensemble methods: MAJORITY, which performs a majority
voting weighted by the F1-Score of the predictions made by all the models, and METALOB, which is
trained with the predictions made by the individual models to learn the most appropriate aggregation
function. A detailed description of these ensemble methods can be found in Section 2.1 in SUP.

4.3 LOBCAST Framework for SPTP

We present LOBCAST [25], a Python-based framework developed for stock market trend forecast-
ing using LOB data. LOBCAST is an open-source framework that enables users to test DL models
for the SPTP task. The framework provides data pre-processing functionalities, which include nor-
malization, splitting, and labelling. LOBCAST also offers a comprehensive training environment
for DL models implemented in PyTorch Lightning [38]. It integrates interfaces with the popular
hyperparameter tuning framework WANDB [44], which allows users to tune and optimize model
performance efficiently. The framework generates detailed reports for the trained models, including
performance metrics regarding the learning task (F1, Accuracy, Recall, etc.). LOBCAST supports
backtesting for profit analysis, utilizing the Backtesting.py [45] external library. This feature en-
ables users to assess the profitability of their models in simulated trading scenarios. We plan to add
new features such as (i) training and testing with different LOB representations [46, 47], and (ii)
test on adversarial perturbations to evaluate the representations’ robustness [48]. We believe that
LOBCAST, along with the advancements in DL models and the utilization of LOB data, has the
potential to improve the state of the art on trend forecasting in the financial domain.

4.4 Performance, Robustness and Generalizability

To test robustness and generalizability, we conducted our experiments for each model using five
different seeds to ensure reliable results and mitigate the impact of random initialization of network
weights and training dataset shuffling. The training process involved training the 15 models for
each seed on each of the considered prediction horizons (K = {1, 2, 3, 5, 10}). More details on
the setting of the experiments are provided in the SUP Section 5. On average over all 5 runs,
the training process for all the models took approximately 155 hours for FI-2010 and 258 hours
for LOB-2021/2022, utilizing a cluster comprised of 8 GPUs (1 NVIDIA GeForce RTX 2060, 2
NVIDIA GeForce RTX 3070, and 5 NVIDIA Quadro RTX 6000).

In Table 2, we summarize the results of our experiments. As the datasets are not well balanced,
we focused on F1-score; other performance metrics are reported in the SUP. The Table compares
the claimed performance of each system (column F1 Claim) with those measured in the robustness
(FI-2010) and generalizability (LOB-2021 and 2022) experiments. For each dataset, we show the
average performance and the standard deviation achieved by each model in all the horizons, along
with its rank.

To evaluate the robustness and the generalizability of the models, we compute the robustness and
the generalizability scores, a value ≤ 100 that is computed as 100 − (|A| + S), where A and S
are defined as follows. A is the average difference between the F1-score reported in the original
paper and the one that we observed in our experiments on FI-2010 for robustness, and on LOB-
2021 and LOB-2022 for generalizability. S is the standard deviation of these differences. The score
penalizes models that demonstrate higher variability in their performance by subtracting the standard
deviation. The average and standard deviation were computed over the declared horizons for each
model and considering all five seeds.

Table 2 clearly highlights the following:
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FI-2010 LOB-2021 LOB-2022
Model F1 Claim F1

LOBCAST
F1

Rank
Robustness
Score (%)

F1
LOBCAST

F1
Rank

General.
Score (%)

F1
LOBCAST

F1
Rank

General.
Score (%)

MLP 51.8 ± 3.2 ↓ 48.0± 2.6 14 91.8 ↑ 55.5±3.9 14 95.0 ↑ 53.1±2.5 13 96.6

LSTM 63.4 ± 2.1 ↓ 63.4 ± 3.6 7 95.5 ↓ 56.9±4.1 11 85.9 ↓ 56.1±2.8 9 88.8

CNN1 57.9 ± 1.9 ↑ 58.1±13.1 10 80.9 ↓ 57.5±3.0 8 97.0 ↓ 57.1±2.7 6 99.3

CTABL 74.3 ± 5.2 ↓ 69.6 ± 4.3 5 91.3 ↓ 59.7±2.7 3 78.4 ↓ 58.1±3.3 5 78.4

DEEPLOB 78.9 ± 4.4 ↓ 71.4 ± 5.3 4 87.6 ↓ 59.5±3.0 4 73.7 ↓ 59.5 ± 2.9 1 74.7

DAIN 66.8 ± 1.5 ↓ 55.6 ± 5.9 11 81.4 ↓ 55.9±4.4 12 79.5 ↓ 54.1±2.1 12 83.9

CNNLSTM 47.0 ± 0.0 ↑ 63.2 ± 8.4 8 75.7 ↑ 57.0±3.3 10 87.8 ↑ 56.8±2.5 7 90.3

CNN2 45.0 ± 0.8 ↑ 50.5±17.3 12 70.5 ↑ 55.5±3.5 13 86.6 ↑ 55.8±3.2 10 88.6

TRANSLOB 87.3 ± 4.0 ↓ 59.4 ± 2.6 9 69.9 ↓ 57.7±2.9 7 64.2 ↓ 50.4±6.1 14 56.4

TLONBoF 53.0 ± 0.0 ↓ 49.7±10.5 13 81.5 ↑ 57.3±2.9 9 99.1 ↑ 54.2±3.1 11 99.9
BINCTABL 80.1 ± 6.9 ↑ 82.6 ± 7.0 1 99.7 ↓ 61.2 ± 2.7 1 73.5 ↓ 59.2±3.3 2 72.3

DEEPLOBATT 78.8 ± 3.1 ↓ 67.3 ± 9.0 6 81.2 ↓ 60.1±3.0 2 75.7 ↓ 58.9±2.8 3 74.5

DLA 78.7 ± 0.7 ↓ 73.4±12.1 2 93.2 ↓ 57.7±3.7 6 74.9 ↓ 56.6±2.4 8 76.9

ATNBoF 67.1 ± 5.5 ↓ 40.9 ± 7.7 15 66.1 ↓ 53.1±3.7 15 80.9 ↓ 48.0±6.9 15 81.2

AXIALLOB 82.0 ± 3.7 ↓ 73.4 ± 5.7 3 88.2 ↓ 59.5±3.3 5 71.3 ↓ 58.6±2.6 4 70.7

METALOB – 82.2 ± 7.3 – – 55.9 ± 2.6 – – 53.2 ± 1.5 – –
MAJORITY – 60.0 ± 12.7 – – 55.5 ± 2.3 – – 47.9 ± 2.0 – –

Table 2: Robustness, generalizability, and performance scores of the models. Arrows indicate
whether the measured F1 of a system is higher or lower than stated in the original paper. Colour sat-
uration highlights systems with best (green) and worst (red) robustness and generalizability scores.

1. Except for a few systems, there is a considerable difference between the claimed performances
and those measured in both robustness and generalizability experiments. Note that while the
performance gap is negative on average and considerably negative in the scenario of LOB-2021
and 2022, a few systems outperform the claimed results, as highlighted by the arrows in Table 2.

2. All models are very sensitive to hyperparameters, in fact, they diverged (F1-score ⩽ 33%) during
the hyperparameters search for about half of the runs.

3. The ranking of systems changes considerably if we compare the declared performances with
those measured in our experiments. On the other hand, the best six systems in FI-2010 remain
the same in LOB-2021 and 2022.

4. The best-ranked systems do not consistently hold the lead in terms of robustness and generaliz-
ability - except for BINCTABL. On the contrary, some of them obtained poor generalizability
scores, suggesting that they overfitted the FI-2010 dataset.

5. Five of the best six models incorporate attention mechanisms. In particular, the best-performing
model is BINCTABL, which enhances the original CTABL model by adding an Adaptive Bilinear
Normalization layer, enabling joint normalization of the input time series along both temporal and
feature dimensions. On average, BINCTABL improves the F1-score by up to 9.2% compared to
DLA, i.e., the second-best model, and up to 13% compared to CTABL.

6. Regrettably, ensemble models (the last two rows in Table 2) do not exceed the performance of
the top-performing models, which is probably due to the relatively high agreement rate among
systems, as shown in Section 6 in SUP.

Robustness on FI-2010 As far as the robustness experiments are concerned, it is important to
note that some models discussed in the literature incorporate additional market observation features
for predictions. This is the case for models such as DAIN, CNNLSTM, TLOBOF, and DLA. To
ensure a fair comparison among the models, we included them in our study but reduced their feature
set to only the 40 raw LOB features. Due to the presence of these additional features, a strict
robustness study could not be conducted for these models. However, the reduction of features did
not necessarily cause a deterioration in performance: of particular interest is the case of CNNLSTM,
for which the authors used stationary features derived from the LOB, stating that they were better
than the raw ones. Impressively, CNNLSTM achieves the greatest average improvement of 20.9%
among all the models, proving that, for this model, the raw LOB features are better suited to forecast
the mid-price movement than the features proposed by the original authors. This is also the case for
DLA, which originally uses 144 input features. In fact, with the only raw features, DLA exhibited
remarkable performance, ranking second best in terms of F1-score.

Based on these experiments (summarized in Table 2), the BINCTABL model demonstrates the
highest F1-score when averaged over the seeds and prediction horizons, achieving an average of
82.6% ± 7.0. Notably, the BINCTABL model also exhibits the strongest robustness score of 99.7,
ranking as the best in terms of robustness. For a more comprehensive analysis, Figure 2 provides
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Figure 2: Confusion matrices for BINCTABL (k = 1, 10) on FI-2010 and LOB-2021 datasets.

the confusion matrices of the BINCTABL model’s predictions for two horizons (k = 1 and k = 10).
The confusion matrices demonstrate that the model is slightly biased toward the stationary class.
This pattern is consistent across all the models, especially for the first three horizons, reflecting the
imbalance of the dataset towards the stationary class, as specified in Section 4.1.
Remarkably, a significant number of models in our study failed to achieve the claimed performance
levels. Two possible reasons are the lack of the original code and the missing hyperparameters decla-
ration. Among the models, TRANSLOB and ATNBOF exhibit the largest discrepancies, ranking as
the second and first worst performers, respectively. Notably, ATNBoF performs the poorest among
all models, both in terms of robustness score and F1-score.
We observed that CNN1, CNN2, CNNLSTM, TLONBOF, and DLA are the most sensitive models
in terms of network weight initialization and dataset shuffling, in fact, these models exhibit a stan-
dard deviation over the runs that exceeds 5 points, indicating a high degree of variability in their
performance.
Finally, we highlight that none of the top three models in our study utilize h = 100 long market ob-
servations as input, despite it being a common practice in the literature [26–28, 32, 36], meaning that
they are able to achieve good results without relying on a large historical context. This suggests that
the most influential and relevant dynamics impacting their predictions tend to occur within a short
time frame. In Section 6 in SUP, we analyze in more detail the robustness results of our benchmark
study when varying the horizons.

Generalizability on LOB-2021/2022 When comparing the performance of models on the FI-2010
and LOB-2021/2022 datasets, we observe that models showing high performance on the FI-2010
dataset demonstrate a deterioration in performance. Conversely, some of the models that performed
poorly on the FI-2010 dataset show an improvement in performance on the LOB-2021/2022 datasets.
However, the overall performance of all models on the LOB-2021/2022 dataset is still significantly
lower than on the FI-2010 dataset, ranging 48-61% in F1-score. Furthermore, we conjecture that the
overall performance is worse in LOB-2022 than in LOB-2021 due to the higher stocks’ volatility.
We mention two potential factors contributing to this observed phenomenon. Firstly, the LOB-
2021/2022 datasets present a higher level of complexity than the FI-2010 dataset, despite having
been generated with a similar approach. Indeed, NASDAQ is a more efficient and liquid market
than the Finnish one, as evidenced by the fact that LOB-2021/2022 datasets have approximately
three times the size of FI-2010 in terms of events for the same period length. Secondly, the best-
performing models may overfit the FI-2010 dataset, leading to a decrease in their performance when
applied to LOB-2021/2022 datasets. In particular, BINCTABL experiences an average decrease of
approximately 19.6% in F1-Score across all horizons, resulting in a generalizability score of 73.5%.
For a more detailed analysis of our generalizability results, we refer to Section 6 in SUP, where
we also illustrate the substantial performance variation across different stocks. Among the tested
models, CSCO stands out as yielding the highest performance. This may be attributed to the high
stationarity of CSCO (balance 18-65-17% in the train set), indicating more stable and predictable
behaviour. This hypothesis is supported by the confusion matrices, which consistently show the best
performance in the stationary class across all models; for reasons of space, we reported only those
of BINCTABL in Figure 2 while for the complete study, we refer the reader to Section 7 in SUP.
Finally, as a final benchmark test, we conducted a trading simulation using LOB-2021. The results
confirm the challenging nature of the task using the up-to-date LOB-2021 dataset, indicating that
the models’ profitability is far from guaranteed. For more detailed information about the simulation,
please refer to Section 7 in SUP.
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5 Discussion and Conclusions

Our findings highlight that price trend predictors based on DNNs using LOB data are not consis-
tently reliable as they often exhibit non-robust and non-generalizable performance. Our experiments
demonstrate that the existing models are susceptible to hyperparameter selection, randomization,
and experimental context (stocks, volatility). In addition, the selection of datasets and the experi-
mental setup fail to capture the intricacies of the real-world scenario. This lack of generalizability
makes them inadequate for practical applications in real-world settings.

Models Our results lead to a crucial observation: on the LOBSTER dataset, SOTA DL models for
LOB data exhibit low generalizability. We suggest that this phenomenon is due to two factors: the
higher complexity of the LOBSTER dataset compared to the FI-2010 dataset, and the overfitting of
the best-performing models to the FI-2010 dataset, which lowers their performance on the LOB-
STER dataset. Another key finding of this study is that the top models with the highest performance
on both datasets employ attention mechanisms. This suggests that the attention technique enhances
the extraction of informative features and the discovery of patterns in LOB data. However, in gen-
eral, it appears that current models cannot cope with the complexity of financial forecasting with
LOB data. Future investigations should consider state-of-the-art approaches to multivariate time
series forecasting, such as [49–51], which have not yet been adopted in the financial sector.

Dataset Financial movements can be influenced by geopolitical events, as political actions and de-
cisions can significantly impact economic conditions, market sentiment, and investor confidence [1].
These factors are not captured by LOB data alone. For this reason, we believe that price predictors
may benefit from integrating LOB data with additional information, for example, sentiment analysis
relying on social media and press data, representing an easily accessible source of exogenous factors
impacting the market [52]. This is particularly true for mid- and long-term price trend prediction,
whereas it might not hold for HFT strategies [2]. We remark that micro and macroscopic market
trends are fundamentally different, and the microscopic behaviour of the market is very much driven
by HFT algorithms, making it almost exclusively dependent on financial movements rather than ex-
ternal factors. In this scenario, granular and raw LOBs may suffice to provide data for price trend
prediction. Another weakness in dataset generation is the potential for training, validation, and test
splits to have dissimilar distributions. This occurs due to the distinct characteristics of the historical
periods covered by the stock time series. This can negatively affect the model’s ability to generalize
effectively and make reliable predictions on unseen data.

Labelling As we discussed in Sections 2, 4.1 and 4.4, the choice of the threshold for class defini-
tion in Equation 2 plays a crucial role in determining the trend associated to a market observation.
We believe that current solutions present room for improvement. As discussed in Section 4.1, in
FI-2010, the parameter θ was chosen to obtain a balanced dataset in the number of classes for the
horizon k = 5 (which is the mean value of the considered interval in the set K). Thus, θ is not
chosen in accordance with its financial implication but rather serves the purpose of balancing the
dataset. We recall that the dataset is made of different stocks. With such a labelling system, fixed
θ, stocks with low returns become associated with stable trends, as their behaviour is overshadowed
by stocks exhibiting higher returns. Good practices that could be investigated are to use a weighted
look-behind moving average to absorb data noise instead of mid-prices as in Equation 2 or to define
a dynamically adapting θ which accounts for changing trends of a stock’s mid-price. Moreover, the
labelling approach of Equation 2, used by all surveyed models, fails to leverage important aspects
available in LOB data, including the volume, which directly influences stock volatility. Therefore,
another possible improvement is the definition and use of other insightful features that can be ex-
trapolated from a LOB in addition to the mid-price. Such values could encapsulate other peculiar
and informative features, such as stocks’ spread and volumes.

Profit In the context of stock prediction tasks, it is of utmost importance to go beyond standard
statistical performance metrics such as accuracy and F1 score and incorporate trading simulations to
assess the practical value of algorithms. SPTP predictors’ ultimate measure of success lies in their
ability to generate profits under real market conditions. It is essential to conduct trading simulations
using real simulators that go beyond testing on historical data. Recent progress has been made in
the context of reactive simulators [53–56].

We acknowledge that our study is subject to some limitations, which should be considered when
interpreting our findings. First, we conducted a grid hyperparameter search for the models which

9



did not specify them. Since hyperparameter search is not exhaustive, our chosen best hyperparame-
ters could potentially undermine the quality of the original systems. Secondly, due to computational
resource limitations, we could not train the benchmarked models on LOB datasets spanning longer
periods, e.g., years rather than weeks. We recognize that doing so could have improved our gener-
alizability results.
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and H. Larochelle, “Improving reproducibility in machine learning research (a report from the
neurips 2019 reproducibility program),” The Journal of Machine Learning Research, vol. 22,
no. 1, pp. 7459–7478, 2021.

[10] O. E. Gundersen and S. Kjensmo, “State of the art: Reproducibility in artificial intelligence,”
in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32, no. 1, 2018.

[11] M. Baker, “Reproducibility crisis,” Nature, vol. 533, no. 26, pp. 353–66, 2016.

10



[12] A. Ntakaris, M. Magris, J. Kanniainen, M. Gabbouj, and A. Iosifidis, “Benchmark dataset for
mid-price forecasting of limit order book data with machine learning methods,” Journal of
Forecasting, vol. 37, no. 8, pp. 852–866, 2018.

[13] G. The Efficient Reconstructor at Humboldt Universität zu Berlin, “Lobster: Limit order book
system.” [Online]. Available: https://lobsterdata.com/

[14] M. M. Kumbure, C. Lohrmann, P. Luukka, and J. Porras, “Machine learning techniques and
data for stock market forecasting: a literature review,” Expert Systems with Applications, p.
116659, 2022.

[15] A. M. Ozbayoglu, M. U. Gudelek, and O. B. Sezer, “Deep learning for financial applications:
A survey,” Applied Soft Computing, vol. 93, p. 106384, 2020.

[16] Z. Hu, Y. Zhao, and M. Khushi, “A survey of forex and stock price prediction using deep
learning,” Applied System Innovation, vol. 4, no. 1, p. 9, 2021.

[17] I. K. Nti, A. F. Adekoya, and B. A. Weyori, “A systematic review of fundamental and technical
analysis of stock market predictions,” Artificial Intelligence Review, vol. 53, no. 4, pp. 3007–
3057, 2020.

[18] J. Shah, D. Vaidya, and M. Shah, “A comprehensive review on multiple hybrid deep learning
approaches for stock prediction,” Intelligent Systems with Applications, p. 200111, 2022.

[19] A. I. Al-Alawi and Y. A. Alaali, “Stock market prediction using machine learning techniques:
Literature review analysis,” in 2023 International Conference On Cyber Management And
Engineering (CyMaEn), 2023, pp. 153–157.

[20] F. Rundo, F. Trenta, A. L. di Stallo, and S. Battiato, “Machine learning for quantitative finance
applications: A survey,” Applied Sciences, vol. 9, no. 24, p. 5574, 2019.

[21] L. N. Mintarya, J. N. Halim, C. Angie, S. Achmad, and A. Kurniawan, “Machine learning
approaches in stock market prediction: A systematic literature review,” Procedia Computer
Science, vol. 216, pp. 96–102, 2023.

[22] B. Lim and S. Zohren, “Time-series forecasting with deep learning: a survey,” Philosophical
Transactions of the Royal Society A, vol. 379, no. 2194, p. 20200209, 2021.

[23] D. Shah, H. Isah, and F. Zulkernine, “Stock market analysis: A review and taxonomy of pre-
diction techniques,” International Journal of Financial Studies, vol. 7, no. 2, p. 26, 2019.

[24] K. Olorunnimbe and H. Viktor, “Deep learning in the stock market—a systematic survey of
practice, backtesting, and applications,” Artificial Intelligence Review, vol. 56, no. 3, pp. 2057–
2109, 2023.

[25] “LOBCAST,” Link available upon acceptance. The code is included in the supplementary ma-
terial.

[26] Z. Zhang, S. Zohren, and S. Roberts, “Deeplob: Deep convolutional neural networks for limit
order books,” IEEE Transactions on Signal Processing, vol. 67, no. 11, pp. 3001–3012, 2019.

[27] A. Tsantekidis, N. Passalis, A. Tefas, J. Kanniainen, M. Gabbouj, and A. Iosifidis, “Using deep
learning to detect price change indications in financial markets,” in 2017 25th European Signal
Processing Conference (EUSIPCO), 2017, pp. 2511–2515.

[28] ——, “Forecasting stock prices from the limit order book using convolutional neural net-
works,” in 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 1. IEEE, 2017,
pp. 7–12.

[29] D. T. Tran, A. Iosifidis, J. Kanniainen, and M. Gabbouj, “Temporal attention-augmented bi-
linear network for financial time-series data analysis,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 30, no. 5, pp. 1407–1418, 2018.

11

https://lobsterdata.com/


[30] N. Passalis, A. Tefas, J. Kanniainen, M. Gabbouj, and A. Iosifidis, “Deep adaptive input nor-
malization for time series forecasting,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 31, no. 9, pp. 3760–3765, 2019.

[31] A. Tsantekidis, N. Passalis, A. Tefas, J. Kanniainen, M. Gabbouj, and A. Iosifidis, “Using deep
learning for price prediction by exploiting stationary limit order book features,” Applied Soft
Computing, vol. 93, p. 106401, 2020.

[32] J. Wallbridge, “Transformers for limit order books,” arXiv preprint arXiv:2003.00130, 2020.

[33] N. Passalis, A. Tefas, J. Kanniainen, M. Gabbouj, and A. Iosifidis, “Temporal logistic neural
bag-of-features for financial time series forecasting leveraging limit order book data,” Pattern
Recognition Letters, vol. 136, pp. 183–189, 2020.

[34] Z. Zhang and S. Zohren, “Multi-horizon forecasting for limit order books: Novel deep learn-
ing approaches and hardware acceleration using intelligent processing units,” arXiv preprint
arXiv:2105.10430, 2021.

[35] Y. Guo and X. Chen, “Forecasting the mid-price movements with high-frequency lob: A dual-
stage temporal attention-based deep learning architecture,” Arabian Journal for Science and
Engineering, pp. 1–22, 2022.

[36] D. T. Tran, N. Passalis, A. Tefas, M. Gabbouj, and A. Iosifidis, “Attention-based neural bag-
of-features learning for sequence data,” IEEE Access, vol. 10, pp. 45 542–45 552, 2022.

[37] D. Kisiel and D. Gorse, “Axial-lob: High-frequency trading with axial attention,” arXiv
preprint arXiv:2212.01807, 2022.

[38] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga et al., “Pytorch: An imperative style, high-performance deep learn-
ing library,” Advances in Neural Information Processing Systems, vol. 32, 2019.

[39] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving,
M. Isard et al., “Tensorflow: a system for large-scale machine learning.” in OSDI, vol. 16, no.
2016. Savannah, GA, USA, 2016, pp. 265–283.

[40] P. Gomber and M. Haferkorn, “High frequency trading,” in Encyclopedia of Information Sci-
ence and Technology, Third Edition. IGI Global, 2015, pp. 1–9.

[41] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016,
pp. 770–778.

[42] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirectional
transformers for language understanding,” arXiv preprint arXiv:1810.04805, 2018.

[43] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan,
R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler,
M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever,
and D. Amodei, “Language models are few-shot learners,” arXiv:2005.14165, 2020.

[44] L. Biewald, “Experiment tracking with weights and biases,” 2020, software available from
wandb.com. [Online]. Available: https://www.wandb.com/

[45] “Backtesting.py.” [Online]. Available: https://github.com/kernc/backtesting.py

[46] Y. Wu, M. Mahfouz, D. Magazzeni, and M. Veloso, “Towards robust representation of limit
orders books for deep learning models,” arXiv preprint arXiv:2110.05479, 2022.

[47] L. Lucchese, M. Pakkanen, and A. Veraart, “The short-term predictability of returns in order
book markets: a deep learning perspective,” arXiv preprint arXiv:2211.13777, 2022.

[48] Y. Wu, M. Mahfouz, D. Magazzeni, and M. Veloso, “How robust are limit order book repre-
sentations under data perturbation?” arXiv preprint arXiv:2110.04752, 2021.

12

https://www.wandb.com/
https://github.com/kernc/backtesting.py
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