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Background: aortic stenosis is a common heart valve disease that mainly affects older people in developed 
countries. Its early detection is crucial to prevent the irreversible disease progression and, eventually, death. 
A typical screening technique to detect stenosis uses echocardiograms; however, variations introduced by other 
tissues, camera movements, and uneven lighting can hamper the visual inspection, leading to misdiagnosis. 
To address these issues, effective solutions involve employing deep learning algorithms to assist clinicians in 
detecting and classifying stenosis by developing models that can predict this pathology from single heart views. 
Although promising, the visual information conveyed by a single image may not be sufficient for an accurate 
diagnosis, especially when using an automatic system; thus, this indicates that different solutions should be 
explored.

Methodology: following this rationale, this paper proposes a novel deep learning architecture, composed of a 
multi-view, multi-scale feature extractor, and a transformer encoder (MV-MS-FETE) to predict stenosis from 
parasternal long and short-axis views. In particular, starting from the latter, the designed model extracts relevant 
features at multiple scales along its feature extractor component and takes advantage of a transformer encoder 
to perform the final classification.

Results: experiments were performed on the recently released Tufts medical echocardiogram public dataset, 
which comprises 27,788 images split into training, validation, and test sets. Due to the recent release of this 
collection, tests were also conducted on several state-of-the-art models to create multi-view and single-view 
benchmarks. For all models, standard classification metrics were computed (e.g., precision, F1-score). The 
obtained results show that the proposed approach outperforms other multi-view methods in terms of accuracy 
and F1-score and has more stable performance throughout the training procedure. Furthermore, the experiments 
also highlight that multi-view methods generally perform better than their single-view counterparts.

Conclusion: this paper introduces a novel multi-view and multi-scale model for aortic stenosis recognition, as 
well as three benchmarks to evaluate it, effectively providing multi-view and single-view comparisons that fully 
highlight the model’s effectiveness in aiding clinicians in performing diagnoses while also producing several 
baselines for the aortic stenosis recognition task.
1. Introduction

Aortic stenosis (AS) is one of the most prevalent valve diseases in de-

veloped countries [1]. It consists of the aortic valve narrowing, which 
restricts the blood flow from the left ventricle to the aorta [2]. With-

out this pathology, left ventricle contractions can easily move blood 
through the valve and into the aorta to eventually reach the rest of 
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the body. During the left ventricle expansions, the aortic valve remains 
closed to prevent backward blood flow from the aorta. As the aor-

tic valve becomes narrowed or constricted with AS, the left ventricle 
must generate a higher pressure with each contraction to move blood 
forward into the aorta [3]. In its early stages, the left ventricle compen-

sates for this increased pressure by thickening its muscular walls (i.e., 
myocardial hypertrophy). In the later stages, the left ventricle dilates, 
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Fig. 1. Example of (left) PLAX and (right) PSAX views.

the wall thins, and the systolic function deteriorates, resulting in an 
impaired ability to pump blood forward and potentially causing back-

ward blood leakages (i.e., regurgitation) [4]. While the effects of AS 
range from mild to severe, the long asymptomatic period experienced 
by many patients makes early detection challenging, which is aggra-

vated by the most common cause of AS being age-related progressive 
calcification [5]. In fact, some individuals may not exhibit symptoms for 
many years, but once symptoms begin, mortality rates increase rapidly 
[1,6]. For this reason, screening is essential to avoid irreversible disease 
progression and otherwise preventable death [7]. To assess the stenosis, 
cardiologists can manually examine key frames acquired using different 
methods such as electrocardiogram (ECG), X-ray angiography (XRA), 
computerized tomography (CT), coronary CT angiography (CCTA) and 
echocardiograms (echos). The latter is the standard means for diagnos-

ing and evaluating AS [8,9], being a non-invasive procedure with mini-

mal risk for the patient that can be used to examine their heart. During 
the echo procedure, a transducer placed on the patient’s chest produces 
sound waves that move through the body and bounce off structures in 
the heart, resulting in live videos of the heart walls and valves. Different 
views of the heart are generated depending on the angle and location 
of the transducer. The heart’s four main cardiac ultrasound views are 
the parasternal long-axis (PLAX), parasternal short-axis (PSAX), Apical, 
and subxiphoid (subcostal). The two echocardiogram views in which 
the aortic valve is visible are the PLAX and the PSAX. The first one is 
obtained with the transducer image marker directed toward the patien-

t’s right ear and the sound beam directed to the spine. The second one 
is obtained by rotating the transducer 90 degrees clockwise with re-

spect to PLAX. An example of these views is shown in Fig. 1. Although 
clinicians can diagnose stenosis by analyzing these images, examining 
medical results generally takes considerable time and increases the doc-

tor’s workload. In addition, intra- and inter-observer variations caused 
by other tissues, camera movements, and uneven lighting can signifi-

cantly affect the visual inspection of aortic stenosis [1,10], indicating 
that different approaches are required to help clinicians make their di-

agnoses.

An immediate solution to the issues mentioned above lies in deep 
learning (DL) algorithms, which can provide a comprehensive and au-

tomated diagnosis of medical images. As a matter of fact, these meth-

ods are effectively being applied to diagnose different illnesses such 
as malignant thyroid nodules [11–13], COVID-19 [14–16], and others 
[17–19]. Indeed, DL algorithms are also used for AS prediction. For in-

stance, the scheme in [20] proposes an automated ensemble approach 
leveraging self-supervised learning (SSL) of PLAX videos and convolu-

tional neural networks (CNNs). Here, the ensemble model is capable 
of identifying severe AS from raw single-view 2D echos. Similarly, the 
work presented in [21] introduces a model based on a faster region 
based convolutional neural network (R-CNN) [22] to detect the aor-

tic valve in video sequences acquired by the transducer. To classify the 
PLAX state, features are obtained from each frame of the sequence, con-

catenated, and subsequently processed by a temporal CNN model to 
predict whether or not there is stenosis. The authors of [23] describe a 
multi-task training procedure to predict AS severity and key parameters 
used in clinical AS assessment. This involves an architecture previously 
validated as the gold standard for video classification and regression 
2

tasks with echo [24], i.e., a residual network (ResNet) [25] with spatio-
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temporal convolutions. A different approach is reported in [26], pre-

senting the development of a screening tool to identify patients affected 
by moderate to severe AS. This approach is based on an architecture in-

spired by DenseNet [27] and also takes into account the patient’s age 
and sex for prediction. Another example of automatic AS recognition is 
proposed in [28], where the authors classify this condition in ECG im-

ages. Specifically, they first train a CNN on manually annotated data 
to extract relevant features from input images and learn to distinguish 
aortic stenosis. Then, they use the gradient-weighted class activation 
mapping (Grad-CAM) algorithm to analyze the output of the trained 
network and detect feature areas in the early time range of the one-beat 
ECG image. Finally, both schemes presented in [29] and [30] address 
the classification of four major cardiac diseases, including AS. In [29], 
the authors developed an embedded low-cost diagnostic tool for both 
medical professionals and personal use at home. This tool comprises 
two modalities; the first is based on a 1D-CNN for the classification of 
heart sounds, i.e., raw phonocardiogram (PCG) signals, and the second 
exploits a 2D-CNN to classify the spectrogram of the given/recorded 
heart sound signals. In [30], the authors designed a lightweight end-to-

end convolutional recurrent neural network (CRNN) architecture that 
consists of two phases: representation learning and sequence residual 
learning. In the first phase, three parallel CNNs extract efficient time-

invariant features from PCG, while in the second phase, a combination 
of bidirectional-long-short term memory (LSTM) and skip connections 
extract temporal features. A common aspect of these DL approaches 
is that they infer stenosis using a single image. However, the visual 
information conveyed by this view may not be sufficient to provide 
the clinician with an accurate diagnosis. In fact, even humans might 
have to examine more than a single image before correctly diagnosing 
an illness. Indeed, combining information from multi-view images has 
been crucial for improving the accuracy and robustness of automated 
methods in diagnosing several diseases [31–35]. While this modality 
is already being explored for other pathologies, existing methods ad-

dressing the AS recognition in echocardiograms are still based on the 
single-view, suggesting that further improvements might be achieved 
by investigating a multi-view approach.

Inspired by the results obtained by [36] using machine learning 
algorithms in AS diagnosis and by recent multi-view deep learning ap-

proaches analyzing other organs and pathologies [37,38], this study 
introduces a novel architecture to predict AS from multi-view echo im-

ages, i.e., the multi-view, multi-scale feature extractor and transformer 
encoder (MV-MS-FETE). In more detail, starting from PLAX and PSAX 
views, two parallel feature extractors derive feature maps at multiple 
scales. These maps are concatenated scale-wise and fed to a patch em-

bedding module to generate a latent representation of the analyzed 
echos, which is then given as input to a transformer encoder predict-

ing whether the patient is suffering from AS. Experiments evaluating 
the model were performed on a recently released public collection, 
i.e., the Tufts medical echocardiogram dataset (TMED) [36]. To the 
best of our knowledge, there are currently no other works addressing 
this dataset; therefore, an extensive analysis was conducted to produce 
multi-view and single-view benchmarks using well-known models such 
as SqueezeNet [39], ResNet101 [25], MobileNet V3 [40], EfficientNet 
B0 [41], and VGG19 [42]. The obtained results show that the proposed 
architecture outperforms the other models in both accuracy and F1-

score, demonstrating its effectiveness in AS recognition.

Summarizing, the main contributions of this paper are:

• Exploring, for the first time in the literature to the best of our 
knowledge, a multi-view approach for diagnosing aortic stenosis 
in echocardiograms;

• Designing a novel architecture (MV-MS-FETE) that integrates 
multi-view images (PLAX and PSAX) and generates multi-scale fea-

tures via parallel feature extractors, utilizing a transformer encoder 

to enhance performance in AS recognition;



Computer Methods and Programs in Biomedicine 245 (2024) 108037D. Avola, I. Cannistraci, M. Cascio et al.

Fig. 2. MV-MS-FETE scheme overview. The model comprises two parallel feature extractors that generate multi-scale feature maps for both PLAX and PSAX views. 
A scale-wise map concatenation is then performed and patch embeddings are generated through 2D convolutions. A transformer encoder is finally tasked with the 
classification of these embeddings to recognize AS.

Fig. 3. Feature extractor scheme overview. The model generates multi-scale features through a series of fire blocks interleaved by max pooling operations that 
reduce the scale along the architecture.
• Establishing benchmarks for both single-view and multi-view aortic 
stenosis recognition on the recently released Tufts medical echocar-

diogram public dataset (TMED);

• Setting a new standard in accuracy and F1-score for multi-view AS 
recognition on the TMED public collection with the proposed MV-

MS-FETE model.

2. Materials and methods

This section focuses on the introduction of the MV-MS-FETE archi-

tecture, which is inspired by the multi-view strategy presented in the 
work of Sun et al. [33], devised for mammographic image classifica-

tion. Following this rationale, the model presented in this paper applies 
the multi-view paradigm to the classification of AS in echocardiograms 
and extends the idea described in [33] with multi-scale features and a 
3

transformer encoder. Multi-scale feature extraction is pivotal in captur-
ing a comprehensive range of information from medical images, as it 
allows the model to recognize patterns and anomalies at various spa-

tial resolutions. In medical imaging, different scales can reveal critical 
details, ranging from broad anatomical structures to minute pathologi-

cal changes, and have been shown to enhance the accuracy of disease 
detection and classification [43]. Particularly, the extraction of features 
at multiple scales is crucial in echocardiography, where the variability 
in cardiac structures and the presence of pathological signs like valve 
calcification or ventricular hypertrophy demand analysis at different 
levels of granularity [44]. Regarding transformer models, they have re-

cently gained traction in the field of medical image analysis due to their 
ability to model long-range dependencies and capture global contextual 
information [45,46]. The integration of a transformer encoder within 
the MV-MS-FETE architecture allows the encoder’s self-attention mech-

anism to weigh the importance of different areas in an echocardiogram, 

thus enabling a more holistic interpretation of cardiac structures and 
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functions [47]. This characteristic is particularly beneficial for AS clas-

sification, where the assessment of cardiac morphology requires careful 
consideration of spatial relationships across the heart [48]. By leverag-

ing multi-scale feature extractors and applying a transformer encoder, 
the MV-MS-FETE architecture can adaptively focus on relevant spatial 
contexts and effectively synthesize and analyze the complex patterns 
present in multi-view echocardiograms, leading to an improved diag-

nostic capability for AS. To enact these components, the MV-MS-FETE 
architecture takes as input two echo views (PLAX and PSAX) of a single 
patient and analyzes them through two parallel CNNs acting as fea-

ture extractors, tasked with generating multi-scale features, as reported 
in Section 2.1. The extracted features are then merged scale-wise, flat-

tened, and concatenated by the patch embedding module described in 
Section 2.2. Finally, the model predicts the presence of aortic steno-

sis for the given patient from these embeddings, using the transformer 
encoder presented in Section 2.3. An overview of the proposed archi-

tecture is summarized in Fig. 2.

2.1. Feature extraction module

The first component of the proposed methodology extracts multi-

scale feature maps through two parallel feature extraction networks 
that take as input a PLAX and a PSAX image, respectively. Both net-

works are uniformly structured, conforming to the architecture depicted 
in Fig. 3. In detail, the input heart view of either network is first fed 
to a 2D convolutional layer that outputs an activation map. A ReLU 
function is applied on this map to remove all negative values from 
the matrix while retaining the other ones. Then, a max pooling oper-

ation is used to reduce the spatial size of the map before generating the 
multi-scale features. These features are obtained via a series of eight 
fire blocks interleaved by two max pooling operations placed after the 
second and fourth modules to enable the multiple-scale analysis. Re-

garding the fire block, it is a building unit for CNNs, defined in the 
SqueezeNet [39] model, and has been found to be effective at gener-

ating features. It comprises a squeeze convolutional layer, which uses 
a 1x1 kernel, followed by an expand convolutional layer, composed of 
two paths using a 1x1 and a 3x3 kernel, respectively. With this struc-

ture, the model extracts three feature maps at different scales for a given 
input 𝑣𝑖𝑒𝑤 ∈ {PLAX, PSAX}: 𝑋𝑣𝑖𝑒𝑤

1 with shape 128 × 15 × 15 at the sec-

ond fire block, 𝑋𝑣𝑖𝑒𝑤
2 with shape 256 × 7 × 7 at the fourth fire block, 

and 𝑋𝑣𝑖𝑒𝑤
3 with shape 512 × 3 × 3 at the eight, and last, fire block. The 

resulting multi-scale feature maps derived by the parallel feature ex-

tractors, i.e., 𝑋𝑚𝑎𝑝𝑠 = {𝑋PLAX
1 , 𝑋PLAX

2 , 𝑋PLAX
3 , 𝑋PSAX

1 , 𝑋PSAX
2 , 𝑋PSAX

3 }, are 
then given as input to the following component of the proposed model, 
i.e., the patch embedding module.

2.2. Patch embedding module

The second component of the proposed architecture is entrusted 
with organizing the feature maps 𝑋𝑚𝑎𝑝𝑠 received by the feature extrac-

tion module so that the transformer encoder can use them to classify 
AS. This step is crucial to the correct implementation of the third com-

ponent as the transformer architecture requires as input a sequence of 
patch embeddings with fixed dimension 𝐷. The first step to prepare this 
data is to merge the received maps scale-wise as follows:

𝑋
⊗
𝑖
=𝑋𝑃𝐿𝐴𝑋

𝑖
⊗𝑋𝑃𝑆𝐴𝑋

𝑖
, (1)

where ⊗ is the concatenation operation and 𝑖 ∈ [1, 2, 3]. The resulting 
features have a shape of 𝑋⊗

1 = 256 × 15 × 15, 𝑋⊗

2 = 512 × 7 × 7, and 
𝑋

⊗

3 = 1024 × 3 × 3, respectively.

Upon merging the multi-scale features, the patch embedding mod-

ule must reshape them so that these representations can be concate-

nated together. The reasoning behind this procedure is twofold. Firstly, 
the standard transformer architecture requires a 1D sequence of token 
embeddings as input since it was devised for the natural language pro-
4

cessing (NLP) task. Secondly, the extracted feature maps have different 
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shapes and can only be concatenated when brought to a common size. 
To address this issue, the merged feature maps 𝑋⊗

𝑖
are flattened in ac-

cordance with Dosovitskiy et al. [46]. However, differing from their 
work that uses a trainable linear projection, the proposed method im-

plements a 2D convolutional layer for each concatenated feature map, 
with a kernel size 𝑘 equal to the map dimension. For instance, map 𝑋⊗

1
has a shape of 256 ×15 ×15, therefore, it will use a kernel 𝑘 = 15 to flat-

ten the map. Through this configuration, the model can automatically 
compute the mapping function used to extract the patch embeddings at 
training time. This ensures that each patch, i.e., one per feature map, 
has the same dimensionality 𝐷 as required by the transformer, where 
𝐷 corresponds to the convolution output filters number. Note that the 
last step to prepare the embeddings for the transformer encoder entails 
their concatenation, resulting in an embedding 𝑃 with shape 3 × 𝐷, 
where each patch represents a specific feature map extracted by the 
first module.

2.3. Transformer encoder module

The last module of the proposed model is a transformer encoder 
that predicts whether a patient has stenosis or not. The implementa-

tion follows the encoder design by [46] and [45], which contains two 
key components, namely, feed-forward layers in the form of a multi-

layer perceptron (MLP), and a multi-headed attention (MHA) layer, that 
applies the attention mechanism in parallel. In more detail, the MHA di-

vides its Query, Key, and Value parameters, i.e., Q, K, and V in Fig. 2, 
into 𝑁 segments and passes each segment independently through sep-

arate heads. The results are then combined to produce a final attention 
score. Formally, this process is represented as:

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄,𝐾,𝑉 ) =⊗(ℎ𝑒𝑎𝑑1,… , ℎ𝑒𝑎𝑑ℎ)𝑊 𝑂, (2)

ℎ𝑒𝑎𝑑𝑖 =𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊
𝑄

𝑖
,𝐾𝑊 𝐾

𝑖
,𝑉 𝑊 𝑉

𝑖
), (3)

where ⊗ is again the concatenation operation, while 𝑊 𝑄

𝑖
, 𝑊 𝐾

𝑖
, 𝑊 𝑉

𝑖
, 

and 𝑊 𝑂 are all learnable parameter matrices.

Regarding Equation (3), it represents a scaled attention computed 
via a dot-product [45] where the input consists of queries and keys of 
dimension 𝑑𝑘, and values of dimension 𝑑𝑣. Specifically, dot products 
between the query and all keys are first computed. These products are 
then divided by 

√
𝑑𝑘, and a 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 function is subsequently applied 

to derive the values’ weights. Moreover, this attention function is com-

puted simultaneously on the query set contained in matrix 𝑄, using 
keys and values that are packed into matrices 𝐾 and 𝑉 . Formally, the 
outputs matrix 𝑊 𝑂 is computed via the following equation:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾,𝑉 ) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥

(
𝑄𝐾

𝑡√
𝑑𝑘

)
𝑉 . (4)

The resulting outputs are concatenated and linearly transformed 
through a MLP to perform the AS classification task. It is important 
to note that the MHA enables the model to focus on different parts of 
the sequence, effectively connecting the multi-scale features generated 
by the patch embedding module.

Finally, the entire model is trained to minimize the binary cross 
entropy (BCE) loss:

𝐵𝐶𝐸 = − 1
𝑁

𝑁∑
𝑖=1

𝑦𝑖 log(�̂�𝑖) + (1 − 𝑦𝑖) log(1 − �̂�𝑖), (5)

where 𝑦 and �̂� represent the expected and predicted category, respec-

tively.

3. Experimental results and discussion

This section assesses the proposed method’s effectiveness in AS 

recognition. The public collection used to evaluate the model is first 
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Fig. 4. Example of AS severity in PLAX views. In (a) no AS, in (b) mild AS, in 
(c) moderate AS, and in (d) severe AS.

Table 1

Dataset summary for the train, validation, and test sets.

#Patients #Images

Split AS No AS Total AS No AS Total

Train 49 107 156 11680 4801 16481

Validation 16 36 52 4099 1518 5617

Test 16 36 52 4148 1542 5690

introduced in Section 3.1. Implementation details required to repro-

duce the experiments are described in Section 3.2. A comparison with 
multi-view approaches and the effectiveness of the transformer encoder 
are discussed in Section 3.3. Finally, two single-view benchmarks and 
the differences between single and multi-view strategies are analyzed 
in Section 3.4.

3.1. Dataset

The proposed model was tested on the public Tufts Medical echocar-

diogram dataset (TMED) [36], a recently published collection. It con-

tains fully labeled data of 260 unique patients, capturing transthoracic 
echocardiogram (TTE) imagery acquired in routine care consistent with 
the American Society of Echocardiography (ASE) guidelines at Tufts 
Medical Center. All images have a dimension of 64 × 64 and are as-

sociated with an AS diagnosis label (i.e., none, mild, moderate, severe) 
assigned by a board-certified cardiologist. Furthermore, all images have 
a corresponding view label (i.e., PLAX, PSAX, other) provided by board-

certified sonographers or cardiologists. Examples of AS severity are 
shown in Fig. 4.

To use this dataset as a binary classification benchmark for the 
stenosis recognition task, it was organized as follows: diagnoses labeled 
as mild, moderate, and severe, were merged into a single category, 
termed “AS”, while all images without this pathology were marked as 
“No AS”. Moreover, only the PLAX and PSAX views were retained, thus 
discarding all images labeled as “other” in order to maintain only con-

sistent heart views. Finally, the dataset was split into train, validation, 
and test sets using a 3:1:1 ratio, as summarized in Table 1. In detail, 
the train set comprises 156 patients, accounting for a total of 16,481 
images; the validation set contains 52 patients, amounting to a total 
of 5,617 images; while the test set includes the remaining 52 patients, 
totaling 5,690 images.

3.2. Implementation details

The proposed system was implemented using the Pytorch library, 
and all the experiments were executed on an Intel Core i7-7700HQ CPU 
@2.80 GHz with 16 GB RAM and a GeForce GTX 1050 graphics card. 
Each implemented model was trained for ten epochs using the Adam 
Optimizer [49], with an initial learning rate of 0.0025 and a batch size 
of eight. The highest-performing weights in relation to the validation 
set were used as the final configuration to evaluate each architecture on 
the test set. Furthermore, standard classification metrics were employed 
to evaluate all architectures, including accuracy, precision, recall, and 
5

F1-score.
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Table 2

Multi-view SOTA benchmark. Results refer to the test set.

Model Accuracy Precision Recall F1-score

MVMDCNN [33] 87.35% 94.70% 89.81% 91.00%

SqueezeNet [39] 88.14% 91.16% 96.38% 93.17%

ResNet 101 [25] 88.66% 93.80% 97.45% 94.05%

MobileNet V3 [40] 87.97% 93.39% 95.95% 93.05%

EfficientNet B0 [41] 88.59% 93.57% 93.39% 93.21%

VGG 19 [42] 81.66% 89.01% 89.48% 89.12%

Proposed Model 90.31% 93.47% 97.41% 94.36%

Fig. 5. Multi-view accuracy comparison on the validation set.

Fig. 6. Multi-view precision comparison on the validation set.

3.3. MS-MV-FETE performance evaluation

The TMED dataset is a recently published collection and, to the 
best of our knowledge, there currently are no works addressing AS 
recognition on this dataset. Thus, to report a state-of-the-art compar-

ison, experiments were performed using the multi-view mammography 
method described in [33], which inspired the proposed approach, as 
well as several well-known models such as SqueezeNet [39], ResNet101 
[25], MobileNet V3 [40], EfficientNet B0 [41], and VGG19 [42]. All 
these models were pre-trained on the ImageNet dataset [50] and fine-

tuned on TMED, while the model described in [33] was trained directly 
on TMED. Note that to present a fair comparison, all pre-trained models 
were used as backbone feature extractors in the architecture proposed 
in [33] so that all networks leveraged the same multi-view paradigm. 
Moreover, all experiments were performed on the dataset splits men-

tioned in Section 3.1 according to the protocol described in Section 3.2.

A benchmark summarizing the experimental results of multi-view 
approaches is reported in Table 2. As can be observed, all models 

achieve high performances across all metrics, with the proposed method 
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Fig. 7. Multi-view recall comparison on the validation set.

Fig. 8. Multi-view F1-Score comparison on the validation set.

achieving the highest accuracy and F1-score. This outcome highlights, 
on the one hand, the effectiveness of multi-view methods as all mod-

els perform well on the AS recognition task and, on the other hand, the 
advantage of the multi-scale features and transformer encoder of the 
devised method as they enable higher performances. What is more, the 
proposed model has more stable performances during the ten training 
epochs, as can be observed in Figs. 5 to 8 that report accuracy, preci-

sion, recall, and F1-score plots of the selected models on the validation 
set. These metrics provide further insights on the models as they in-

dicate their capability to correctly classify AS (accuracy), produce few 
false positives (precision), miss few true positives (recall), and report 
a holistic view of the models’ overall performance in AS recognition 
(F1-score). By achieving high and stable performance across all met-

rics at training time, these metrics indicate that the proposed approach 
can grasp more relevant and consistent information from the PLAX and 
PSAX views compared to other models and can assist clinicians in mak-

ing more informed diagnoses, given the small number of false negatives 
and false positives. Indeed, although all architectures converge early on 
the training set, as shown in Fig. 9, the only model able to retain consis-

tent performances across all epochs is the proposed MV-MS-FETE. This 
indicates that the devised solution can generalize better on the shown 
data compared to the other models and does not suffer from overfit-

ting. Such an outcome has a twofold explanation. First, the multi-scale 
features allow the model to retain more information and analyze differ-

ent aspects of the input echo, which is crucial given the relatively small 
image size, i.e., 64 ×64. Second, the transformer encoder extracts mean-

ingful details from the patch embeddings generated through the CNNs 
described in Section 2.2, thus helping to reach higher metrics. These as-

pects can also be appreciated by substituting the transformer encoder 
6

with a standard linear classifier performing the AS recognition. In fact, 
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Fig. 9. Multi-view accuracy convergence on the training set.

Fig. 10. Classifier ablation study performed on the validation set.

after this modification, the model can still retain its stability across all 
training epochs. However, performances drop considerably compared 
to the entire MV-MS-FETE, i.e., by ≈4% as illustrated in Fig. 10, thus 
demonstrating the proposed strategy’s effectiveness.

3.4. Single-view benchmarks

Multi-view approaches achieve considerable performances; how-

ever, single-view experiments must also be performed to complete the 
assessment of the chosen pre-trained models on the TMED dataset. To 
this end, tests were conducted using either a PLAX or PSAX view as 
input for the various architectures. The obtained results are reported 
in Table 3 and Table 4 for the PLAX and PSAX view, respectively. As 
can be observed, all models achieve significant performances across all 
metrics with either view, indicating that they can extract relevant char-

acteristics from the input image, an expected behavior as these images 
are both useful to recognize AS. More interestingly, all pre-trained ar-

chitectures tend to reach higher scores when using a PSAX view with 
the exception of MobileNet V3, that shows a preference for PLAX views. 
This outcome suggests that PSAX images might contain more informa-

tion for a neural network, which is also usually the case when they are 
analyzed by clinicians [51].

Independently of the input view, apart from ResNet 101 that per-

forms particularly well on PSAX and can even best multi-view models 
on various metrics, all architectures have lower performances compared 
to the proposed MV-MS-FETE, as well as their respective multi-view 
counterparts. Indeed, by comparing the single-view models with their 
corresponding multi-view version, i.e., Table 3 and Table 4 against Ta-

ble 2, there is a performance increase of up to ≈5/8% depending on 

the metric, e.g., accuracy and recall for the EfficientNet B0. This out-
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Table 3

PLAX single-view benchmark. Results refer to the test set.

Model Accuracy Precision Recall F1-score

SqueezeNet [39] 88.43% 89.04% 97.98% 93.30%

ResNet 101 [25] 88.86% 91.85% 94.87% 93.34%

MobileNet V3 [40] 83.53% 92.14% 87.42% 89.72%

EfficientNet B0 [41] 80.57% 93.99% 81.59% 87.35%

VGG 19 [42] 82.59% 87.74% 91.63% 89.64%

Proposed Model* 90.31% 93.47% 97.41% 94.36%

*Multi-view approach shown as reference.

Table 4

PSAX single-view benchmark. Results refer to the test set.

Model Accuracy Precision Recall F1-score

SqueezeNet [39] 89.51% 91.08% 96.71% 93.81%

ResNet 101 [25] 91.74% 92.75% 97.59% 95.11%

MobileNet V3 [40] 81.47% 92.91% 83.87% 88.16%

EfficientNet B0 [41] 83.24% 93.70% 85.36% 89.33%

VGG 19 [42] 84.61% 85.90% 97.24% 91.22%

Proposed Model* 90.31% 93.47% 97.41% 94.36%

*Multi-view approach shown as reference.

Fig. 11. PLAX single-view comparison on the validation set.

come corroborates the effectiveness of multi-view approaches that can 
leverage information derived from diverse views to obtain significant 
results on the AS recognition task. Moreover, similarly to the multi-

view scenario, when analyzing performances epoch-wise, it is clear that 
single-view approaches suffer from the same issue of their multi-view 
implementation. Specifically, these models tend to overfit on the train-

ing data and generate irregular performance on the validation set, as 
can be observed in Fig. 11 and Fig. 12. This behavior differs from the 
proposed multi-view method that remains consistent throughout the 
various epochs, fully highlighting the MV-MS-FETE effectiveness in the 
aortic stenosis recognition task.

4. Conclusion

This paper presented a novel architecture for aortic stenosis recog-

nition from echocardiogram views, i.e., the multi-view, multi-scale 
feature extractor and transformer encoder (MV-MS-FETE) model. The 
proposed strategy capitalizes on information derived from PLAX and 
PSAX views through two parallel feature extractors that generate multi-

scale feature maps to analyze multiple characteristics of the input, 
effectively performing, for the first time in literature, AS recognition 
from echos in a multi-view setting. The feature maps are concatenated 
scale-wise and converted into patch embeddings so that a transformer 
encoder can use them to predict whether the patient suffers from AS. 
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Extensive experiments were performed on a recently published pub-
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Fig. 12. PSAX single-view comparison on the validation set.

lic collection, i.e., the Tufts medical echocardiogram dataset (TMED), 
where the proposed MV-MS-FETE model set new state-of-the-art per-

formances for multi-view approaches in terms of accuracy and F1-score 
metrics. In detail, several well-known models were used as the back-

bone of an effective multi-view mammography architecture [33] to 
provide a fair multi-view benchmark. Furthermore, single-view exper-

iments were conducted to evaluate the chosen literature architectures, 
resulting in two additional benchmarks associated with the PLAX and 
PSAX views. The obtained results showed that multi-view architectures 
outperform their single-view counterparts with the exception of ResNet 
101, which exhibited a preference for PSAX views. Regarding the pro-

posed model, it also reported more stable performances throughout 
the training epochs, indicating that the multi-scale strategy extracts ro-

bust features from the input images. Finally, additional tests confirmed 
the advantages of the transformer encoder over a standard linear one, 
demonstrating the effectiveness of the proposed approach on the AS 
recognition task.
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