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Abstract. Enhancing image quality is crucial for achieving an accurate
and reliable image analysis in vision-based automated tasks. Underwater
imaging encounters several challenges that can negatively impact image
quality, including limited visibility, color distortion, contrast sensitiv-
ity issues, and blurriness. Among these, depending on how the water
filters out the different light colors at different depths, the color dis-
tortion results in a loss of color information and a blue or green tint
to the overall image, making it difficult to identify different underwater
organisms or structures accurately. Improved underwater image quality
can be crucial in marine biology, oceanography, and oceanic exploration.
Therefore, this paper proposes a novel Generative Adversarial Network
(GAN) architecture for underwater image enhancement, restoring good
perceptual quality to obtain a more precise and detailed image. The
effectiveness of the proposed method is evaluated on the EUVP dataset,
which comprises underwater image samples of various visibility condi-
tions, achieving remarkable results. Moreover, the trained network is run
on the RPi4B as an embedded system to measure the time required to
enhance the images with limited computational resources, simulating a
practical underwater investigation setting. The outcome demonstrates
the presented method applicability in real-world underwater exploration
scenarios.

Keywords: Underwater image enhancement - GAN - Underwater
exploration

1 Introduction

In the last few years, visual information analyzing tools have become increasingly
attractive for solving heterogeneous perception-based tasks such as video surveil-

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. L. Foresti et al. (Eds.): ICTAP 2023, LNCS 14233, pp. 412-423, 2023.
https://doi.org/10.1007/978-3-031-43148-7_35


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43148-7_35&domain=pdf
https://doi.org/10.1007/978-3-031-43148-7_35

Real-Time GAN-Based Model for Underwater Image Enhancement 413

lance [2,8,14,31], biomedical imaging [6,9,32], environmental modeling [1,19],
gesture recognition [5,11], or human behavioral analysis [3,4,7,13,27]. Among
the others, underwater imaging helps to develop new technologies and techniques
to discover underwater environments. However, this process is still challenging
due to limited visibility and light-related phenomena, i.e., absorption, scatter-
ing, and refraction [17]. Indeed, underwater image processing is characterized by
degradation issues, including loss of color information and other optical artifacts
in captured images leading to decreasing performance of visual-related tasks, e.g.,
segmentation, detection, or classification. Despite the promising results in the
literature on terrestrial imagery, there are still plenty of chances to enhance the
perceptual quality of underwater images. Therefore, quality enhancement and
detailed restoration strategies are crucial for better understanding the underwa-
ter environment, identifying new species, and monitoring marine ecosystems. To
this end, the literature proposes several physics- and learning-based strategies
[10,12,15,28]. The former is appropriate for color correction and dehazing; how-
ever, other than being computationally expensive, it requires scene depth and
assessing water quality based on the interaction of light with water, which is not
always available in automated applications. Instead, the latter is appropriate to
enhance the overall perceptual image quality from large data collection. This
paper presents an underwater image enhancement strategy based on a novel
GAN-based architecture to improve the visual perception of the given poor-
quality image. Motivated by the good results in [18], the proposed model lever-
ages U-Net [26] and PatchGAN [18] networks for learning the mapping between
poor- and good-quality underwater images. The effectiveness of the proposed
network architecture is evaluated on the Enhancing Underwater Visual Percep-
tion (EUVP) [18] dataset, an underwater image collection suitable for adversar-
ial model training. Finally, to simulate and test the feasibility of the presented
method in real-world underwater exploration scenarios, usually characterized by
inspection robots with limited computational resources, the trained model is run
on an embedded system suitable for the industrial sector. This simulation mea-
sures the time required to enhance the perceptual quality of underwater images,
which is crucial for practical applications. In summary, the main contributions
of this paper are as follows:

— Designing an innovative GAN model for underwater image quality enhance-
ment, suitable for oceanic explorations and human-robot collaborative exper-
iments;

— Achieving of State-Of-the-Art (SOTA) performance on the EUVP bench-
mark, a real-world underwater image dataset containing paired collections of
poor- and good-quality images for supervised learning;

— Performing tests on an embedded system to measure the time required for
image quality enhancement, simulating a generic and vision-based practical
underwater investigation setting with limited computational resources.
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2 Related Work

Underwater image enhancement is gaining ever-increasing interest in literature
thanks to the wide range of applications in developing, exploring, and protecting
ocean resources. According to the literature, proposed solutions can be classified
into physics- and learning-based approaches.

2.1 Physics-Based Approaches

Traditional physics-based strategies comprise the definition of formal models,
including mathematical or simplified underwater image formation models. In
fact, [25,29] proposed methods relying on the Beer-Lambert law to recover bet-
ter details of underwater images considering the light attenuation related to the
material properties through which the light travels. Instead, the authors in [22]
manipulate poor-quality image color channels to dehaze an image that is later
combined with an enhanced version, obtained through a color correction algo-
rithm, to achieve the final good-quality result. Also, [24] presents an underwater
image dehazing method manipulating the RGB color space. First, the authors
estimate the background light using the quad-tree subdivision iteration algo-
rithm. Afterward, the RGB color space dimensionality prior is compressed to
the UV color space by clustering the pixels into a hundred haze-lines and setting
a haze-free boundary to compute the dehazed version of the image accurately. In
[10], the authors propose a method considering the water type in the enhance-
ment process. Given the low-quality image, they first estimate the veiling-light,
and the color restoration strategy is performed for multiple water types having
different properties. Finally, the best enhanced version is selected automatically
based on the gray-world assumption. However, previous methods require prior
knowledge that may not always provide a reliable solution relying on local and
global color distribution. Therefore, [12] proposes an approach for terrestrial and
underwater image quality restoration without any prior information. A multi-
band decomposition solution extracts the base and detail layers for intensity and
Laplacian modules involved in restoring the image.

2.2 Learning-Based Approaches

Most recently, Deep Learning (DL) techniques have been applied to underwa-
ter image enhancement thanks to their capability of automatically learning the
mappings between two domains from large data collection. In literature, the
GAN model proved effective in improving the perceptual quality of underwater
images. In [28], the authors propose the Class-conditional Attention GAN (CA-
GAN) for underwater image enhancement in which the class label guides the
generation of the good-quality image version. Differently, in [15], a CycleGAN-
based [33] architecture is used to create a paired dataset of underwater poor- and
good-quality images through the style transfer property; therefore, a fully convo-
lutional encoder-decoder is trained for underwater image enhancement on such
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synthesized data. Instead, in [20], the CycleGAN model is used as the back-
bone for a network architecture learning the cross-domain mapping between
underwater and terrestrial images. Also, in [23], the authors exploit a different
GAN model that uses terrestrial images and depth maps to learn the color cor-
rection of monocular underwater images in an unsupervised fashion. In [30] is
proposed a stacked conditional GAN consisting of a haze detection sub-network
and color correction sub-network. In detail, the former produces a hazing detec-
tion mask from the underwater image given as input, while the latter corrects
the image color by exploiting the previously predicted mask. Instead, [16] pro-
poses a multiscale dense GAN combining residual learning, dense concatenation,
and multiscale operation to correct color casts and restore image details. In [18],
the authors propose a fully-convolutional conditional GAN-based model with a
multi-modal objective function to evaluate the perceptual quality of the given
underwater image considering global content, color, local texture, and style infor-
mation. Finally, in [21], multiple inputs and a GAN architecture are combined
to solve color casts, low contrast, and haze-like issues. Specifically, the model
generator component comprises main and auxiliary sub-networks. Initially, the
main module extracts the features from raw underwater images, whereas the
auxiliary component extracts the features from the fusion-based enhanced ver-
sion obtained through SOTA methods. Afterward, the two sub-networks outputs
are merged to decode the restored image.

3 Method

To enhance underwater images by increasing their perceptual quality, the GAN-
based architecture depicted in Fig.1 was designed to find the non-linear map-
ping between poor- and good-quality underwater images. The proposed model
expands the traditional GAN network by leveraging a Convolutional Neural Net-
work (CNN) architecture to handle visual data by extracting the low-dimensional
feature representation of underwater images used to improve the input images
visually. To this end, the network training follows a supervised fashion, allow-
ing to map the underwater poor-quality image subspace to the ground truth
good-quality image subspace. With such a supervised training paradigm, the
underwater image structural information and scene details are maintained while
the network learns to generate its restored version.

3.1 Underwater Image Enhancement

Recently, learning-based approaches have shown to be effective for underwater
image enhancement achieving promising results. The GAN-based models can
successfully approximate a mapping function of a given input data distribu-
tion to a target data distribution by generating fake samples as if they were
drawn from the target distribution itself. Indeed, the proposed network relies
on this property using a CNN-based GAN architecture comprising generator
(@) and discriminator (D) components, where the former produces fake images
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Fig.1. The proposed GAN-based architecture. Given the poor-quality underwater
image as input, the network is trained to restore good perceptual quality, obtaining a
more precise and detailed image.

trying to learn the target distribution of the enhanced images while the latter
discriminates against all real and fake enhanced images. Specifically, motivated
by the success of skip connections in generative adversarial models for image-
to-image mapping and quality enhancement, G is a customized version of the
fully-convolutional U-Net architecture. In detail, the encoder part consists of
five convolutional layers with 3 x 3 filter size and a stride of 2, each followed
by batch normalization and Leaky Rectified Linear Unit (LeakyReLU) activa-
tion function. Alongside, the decoder component follows a reverse structure of
the encoder with transposed convolutional layers rather than convolutions and
Rectified Linear Unit (ReLU) instead of LeakyReLU activation functions to sta-
bilize the training process. Finally, after the last transposed convolution, the
decoder uses the hyperbolic tangent function to reconstruct the restored images.
Precisely, given as input the RGB underwater image, with size 256 x 256 x 3,
the encoding part of the network learns feature maps of shape 16 x 16 x 1024,
representing its low-dimensional feature representation. Afterward, the decoder
utilizes these latent features to generate an enhanced version of the image with
the final shape 256 x 256 x 3. In addition, to enable G for accurately reproducing
features such as local texture and style, the discriminator is a PatchGAN-based
network discriminating on patch-level information. Specifically, D comprises five
padded convolutional layers with 4 x 4 filters and a stride of 2, except for the
last layer set to 1, followed by batch normalization and LeakyReLU activation.
Given the RGB image as input, the discriminator extracts feature maps of size
30 x 30 on which a linear layer and the sigmoid function are applied for dis-
criminating between real or fake good-quality images. Following this adversarial
training strategy, the generator G learns the significant low-dimensional features
to maintain from underwater data; indeed, when D classifies both original and
generated enhanced images as reals, it implies that the low-dimensional repre-
sentation is very informative to the point of fooling the discriminator with the
restored image. Formally, the underwater-to-enhance image mapping leverages
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the min-max game between G and D models, defined as:
Lean(D, G) = minmax(By [logD(Y)] + Ex,y[log(1 — (D(G(X))))]). (1)

where X represents the underwater images as input, Y the ground truth good-
quality images, and G(X) the restored image from the input, D(Y") and D(G(X))
indicate the estimated probabilities of given good-quality and enhanced images
being real. Since the Lgan is designed for learning to approximate the target
distribution, it does not enforce the generator G to maintain important aspects
like global content, color, style, and local structures. To this end, in order for G to
generate an enhanced version of the underwater input image that is consistent
with the corresponding good-quality ground truth, the Mean Absolute Error
(MAE) and Mean Standard Error (MSE) between the restored and original
ground truth images are defined as:
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where X (i,7) and Y (4,j) indicate a pixel in the enhanced and original good-
quality images, respectively. Thus, the training objective of the overall network
is to minimize the loss function, defined as follows:

L(l)7 G) = wGANLGAN(D7 G) + w]MAEMAEG + wMSEMSEg. (4)

where wagan, Waprag, and wyrsg are weighting parameters adjusting the impact
of individual losses.

4 Experiments

This section presents a comprehensive evaluation of the proposed GAN-based
model on the EUVP dataset for the underwater image enhancement task. Specif-
ically, it describes significant implementation details and quantitative and qual-
itative evaluations. Moreover, it also reports the image enhancement time of the
trained network running on the Raspberry Pi 4 model B (RPi4B) as an embed-
ded system, simulating a generic practical underwater investigation setting with
limited computational resources.

4.1 EUVP Dataset

The EUVP dataset [18] is the publicly available benchmark focused on underwa-
ter image enhancement that contains poor and good perceptual quality under-
water image samples suitable for models trained in a supervised fashion. Specif-
ically, it contains 8670 images with a size of 256 x 256 comprising 3700 training
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Fig. 2. EUVP dataset paired image samples. In the first row GT good-quality images;
in the second row the corresponding underwater poor-quality images.

pairs and 1270 validation samples. Data augmentation is applied to training data,
including horizontal flip, vertical flip, and random crop, increasing to 10882 the
training pairs. For paired data, the ground truth good-quality images were gen-
erated by using the method proposed in [15]. Figure?2 illustrates some paired
training image samples.

4.2 Implementation Details

The proposed architecture design has been developed using the PyTorch frame-
work. The experiments were performed on two GPUs, i.e., x2 NVIDIA GeForce
RTX 2080 Ti with 11 GB of RAM. In detail, the network was trained following a
supervised setting for 50 epochs by exploiting the original EUVP data split and
training protocol. For the model training, Adam was used as the optimizer with
a learning rate set to 0.0002, an € parameter of 1le—8, a weight decay set to le—2,
a first 07 and second B2 momentum initial decay rate of 0.5 and 0.999, respec-
tively. Finally, the weight parameters adjusting the loss functions within Eq. (4)
were set to wgan = wyse = 1 and w4 = 10. For the proposed method eval-
uation, the standard metrics Peak Signal to Noise Ratio (PSNR) and Structural
Similarity Index Measure (SSIM) were used to compare the enhanced images
with the corresponding ground truth quantitatively. Precisely, the PSNR esti-
mates the reconstruction quality of the restored image, while the SSIM compares
the two images considering three properties: luminance, contrast, and structure.

4.3 Underwater Image Enhancement Evaluation

Regarding the underwater image enhancement, the quantitative results are
reported measuring the PSNR and the SSIM metrics between the proposed
model enhanced image version and the available respective ground truth. With
the aim to approximate the image reconstruction accuracy of the restored image,
the PSNR is defined as follows:

PSNR(X,Y) = 10log,,[255% /M SE(X,Y)], (5)
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Fig. 3. Qualitative results for underwater image enhancement. In the first and fourth
rows, the input underwater images; in the second and fifth rows, the corresponding
good-quality GT images; in the third and sixth rows, the proposed network enhanced
images.

4.4 Embedded System Evaluation for Practical Underwater
Exploration Simulation

Concluding the proposed method evaluation, the trained model is run on com-
modity hardware with limited computational resources to simulate a practi-
cal underwater investigation setting. A generic vision-based oceanic exploration
process is characterized by a visual sensor mounted on the automated under-
water vehicle capturing poor-quality images. Therefore, an embedded system
(e.g., RPi4B) can be used to enhance the captured image quality for underwater
image processing tasks in real-time, e.g., during inspections of pipelines, dams,
and offshore platforms, to enable safer and more efficient maintenance and repair
operations in the industrial sector. In many applications, time plays a crucial
role. The proposed neural model is tested on an RPi4B, a system based on a
Quad-core Cortex-A72 (ARM v8) 64-bit SoC @1.5 GHz processor with 2 GB of
RAM board, to simulate the described investigation setting. Since we use trained
weights for the model, image enhancement performance does not change with
respect to the reported in Sect. 4.3. Therefore, the critical factor is examining the
time required to obtain a good-quality image. In detail, given a 256 x 256 image
as input, the prediction time for a single image enhancement is about 0.029 s,
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Table 1. Performance evaluation on the EUVP dataset and comparison with key
literature physics- and learning-based methods.

Model Type PSNR SSIM 7
Uw-HL [10] Physics-based 18.85 £ 1.76 |0.7722 £ 0.066
Mband-En [12] Physics-based 12.11 £2.55 | 0.4565 + 0.097
Res-GAN [18] Learning-based | 14.75+2.22 |0.4685 £ 0.122
Res-WGAN [18] Learning-based |16.46 £1.80 |0.5762 4 0.014
LS-GAN [18] Learning-based | 17.83 £2.88 |0.6725 £ 0.062
Pix2Pix [18] Learning-based |20.27 £2.66 |0.7081 £ 0.069
UGAN-P [15] Learning-based | 19.59 £2.54 |0.6685 =+ 0.075
CycleGAN [18] Learning-based |17.14 £2.17 | 0.6400 £ 0.080
FUnIE-GAN-UP [18] | Learning-based 21.36 £2.17 |0.8164 £ 0.046
FUnIE-GAN [18] Learning-based |21.92+1.07 |0.8876 £ 0.068
Ours Learning-based | 22.09 + 1.02 | 0.9002 + 0.059

where X and Y are the enhanced and ground truth images, respectively. Instead,
to measure the perceptual restored image quality, the SSIM is defined as:

SSIM(X,Y) = ( 2uxpy + ¢ 20xy + 2 ) (6)

u§<+u§+01><0§(+0§+02

where X and Y are always the enhanced and ground truth images being com-
pared, pux and py are the pixel sample means of X and Y, respectively, ox
and oy are the standard deviations, oxy is the covariance of x and y; finally,
c1 and cy are constants used to stabilize the division when the denominator is
close to zero. Table 1 reports the obtained results on test images and summarizes
comparisons with key literature physics- and learning-based works. As can be
observed, the learning-based methods generally perform significantly better than
physics-based approaches. However, the proposed GAN-based network achieves
remarkable and increased performances in reconstruction quality, i.e., PSNR,
and restoring perceptual quality, i.e., SSIM. Regarding the qualitative evalua-
tion, the obtained results are depicted in Fig. 3. As can be observed, the presented
approach generates enhanced underwater images, restoring optical quality and
successfully removing the typical blue or green tint in underwater images. Notice
that, in some cases, the enhanced color in the restored images generated by the
proposed method is closer to the true color rather than in the ground truths.
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thus handling roughly 34FPS in real-time. This result is also confirmed by eval-
uating the entire test set. Therefore, the model can be executed on commodity
hardware at a considerable amount of FPS, thus demonstrating its applicability
in real-world scenarios.

5 Conclusions

This paper presents a novel GAN-based architecture for underwater image
enhancement to obtain a precise and detailed scene, restoring good perceptual
quality. By learning the low-dimensional feature representation of underwater
images, the proposed network maintains the structural information and details
while discovering the mapping between poor- and good-quality images following
a supervised training fashion. More importantly, the proposed method achieved
state-of-the-art performance on a real-world underwater image dataset contain-
ing paired collections of poor- and good-quality images and demonstrated real-
time capabilities on commodity hardware for up to 34FPS.
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